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ABSTRACT 
There is a large and growing body of web accessible biomedical 
literature. As this body of electronic literature grows, so does the 
possibility that document analysis techniques can be used to 
automatically extract useful biomedical information from them, 
particularly in the discovery of key concepts dealing with genes, 
proteins, drugs, and diseases and associations among these 
concepts. VCGS (Vocabulary Cluster Generating System) was 
designed to automatically extract and determine associations 
among tokens from a subset of biomedical literature namely 
cancer. Such information has notable potential to automate 
database construction in biomedicine, instead of relying on 
experts’ analysis. This paper reports on the mechanisms for 
automatically generating clusters of tokens. A formal evaluation 
of the system, based on a subset of 5338 Pubmed titles and 
abstracts, has been conducted against the Swiss-Prot database in 
which the associations among concepts are entered by experts 
by hand. 

Categories and Subject Descriptors 
D.2.8 [Database Management]: Database Applications – data 
mining.  

General Terms 
Algorithms, Experimentation,  

Keywords 
Web Data Mining, Web Information Extraction 

1. INTRODUCTION 
There is now a huge corpus of biomedical literature available 
electronically, e.g. the abstracts in the Pubmed Database. The 

complex medical concept relations in this literature are highly 
valuable. Unfortunately, there are few comprehensive sources of 
information on biomedicine that explicitly capture and record 
such associations.  

Finding the association among various biomedical concepts is 
difficult. Most current resources are constructed by hand. 
Researchers have spent much effort developing systems to 
automatically mine biomedical literature. Some researchers have 
focused on detecting gene and protein names [11, 7, 8]. Others 
put more emphasis on extracting complex interactions among 
those biomedical concepts [15, 4, 12, 13]. Natural language 
processing (NLP) techniques are used in these studies. However, 
the efforts so far have relied on relatively expensive NLP 
approaches or knowledge bases containing hand-coded rules. 

In this paper, we discuss a project aimed at automated database 
construction in biomedicine. We developed VCGS (Vocabulary 
Cluster Generating System), a system that automatically extracts 
and determines associations among tokens from biomedical 
literature. We used various strategies in the information 
extraction and retrieval process, both linguistic and statistical.  

Our aim in this study is to examine how the key algorithms 
influence the clustering results and how they interact with each 
other. A formal evaluation of the system, based on a subset of 
5338 Pubmed titles and abstracts, has been conducted against 
the well-known Swiss-Prot database, in which the associations 
among concepts are entered by experts by hand. In the future, 
this system may be used to predict the relations among genes, 
proteins, diseases, and drugs. 

2. TOKEN EXTRACTION AND 
ASSOCIATION ALGORITHMS 
Our implementation of extracting potentially relevant tokens 
permits the researcher to select specific areas as targets for 
vocabulary discovery. Also, the researcher can adjust the free 
parameters in the system to control the granularity (specificity) 
of the tokens and associations, and to explore the effect of the 
parameters on the quality of the clusters produced.  
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2.1 Token Discovery 
The first step in the analysis of medical abstracts is to determine 
the tokens that are used for further analysis. In other words, a 
dictionary needs to be created. We use the following technique 
to select the dictionary. 

1. Identify all unique tokens 1 . Only individual words were 
treated as tokens. Identify the document in which each token 
appears. Remove from the token list commonly appearing 
tokens by using a stop-word list. 

2. Calculate the frequency of each unique token in each 
document, the number of documents in which each token 
appears, and the total number of documents in the training set. 

3. Convert the frequency of each unique token/document to a 
weight based on following formula [14]: 

                                     )/log( kikik nNtW ×=                                 (1)       

where ikt is the number of occurrences of token kt in document 
i . Additionally, )/log( knN  is the inverse document 
frequency of token kt , where, N   is the total number of 
documents in the training set, and kn  is total number of 
documents that contain the token kt . This formula is called 

idftf ⋅  (token frequency multiplied with inverse document 
frequency). 

4. Establish a rank for each unique token in each document 
according to its weight calculated above. For example, the token 
with the highest weight in a document receives a rank of 1. 

5. Sort the list of tokens by rank and token. Extract the tokens 
that are ranked between R−1 in at least D  documents based 
on the rank and distribution proportion selected by the user. A 
small value of R ensures selection of highly weighted tokens, 
and a relatively large value of D  ensures that the same token is 
highly weighted in significant proportion of the training 
documents. 

The essence of the technique above is the weighting scheme in 
step 3 and the selection of appropriate parameters in step 5. Step 
3 ensures that tokens are weighted according to their 
discriminatory power as measured in terms of their distribution 
in individual documents and the collection as a whole. The step 
3 formula guarantees that tokens with high frequency in a 
moderate number of documents (important tokens representing a 
theme in a subset of documents) would be weighted high, while 
tokens with extremely high frequency in many documents 
(common tokens in a domain) would be weighted down. Step 5 
provides the user further control over fixing the granularity of 
tokens and the total number of tokens desired. If the user selects 
low R  (rank) and low D  (total documents in which token has 
to be ranked between R−1 ), highly ranked but specific tokens 
that occur rarely may be found. Whereas by increasing R  and 
decreasing D , more general tokens that appear more frequently 
can be found. It is left up to the users to select a combination of 
parameter values that is appropriate based on their individual 

                                                                 
1 Formally establishing tokens is a complex problem. We 

employed the definition established in [10] to identify tokens. 

needs. As will be shown later, this has a large effect on the 
quality of the clusters produced.  

To measure how many of the tokens extracted are gene names or 
protein fragments, we validated the tokens against three local 
databases. One of them is a gene name database containing a list 
of 84800 gene names, constructed from GeneCards database. 
We search the database to see if the token matches any of 
database records. A second one is a protein name database 
containing 377853 protein names, constructed from Swiss-Prot 
and TrEMBL protein knowledge base. We search the database 
to see if the token matches any fragment of protein names. The 
third one is an English dictionary, constructed from the Webster 
Dictionary containing 232731 common English words. It is used 
to filter out common English words from the extracted tokens. 

2.2 Utilizing Latent Semantic Information 
Having selected the dictionary, the next step is to compute a 
vector representation for every document. To compute document 
vectors, we treated each of the terms discovered in the previous 
step as dimensions in a vector space. Each document was placed 
at a point in that space by assigning it a value along each 
dimension. For each term, we used the idftf ⋅  values, computed 
as indicated above. 

To improve the performance of the token association discovery 
(described in the next section), we wanted to enhance the quality 
of these document vectors. A process known as Latent Semantic 
Analysis (LSA)[6, 3, 2, 5], to reduce the rank of the matrix, has 
been shown to enhance document vectors by using latent 
semantic structure in the vectors to help eliminate noise and deal 
with co-occurrence of terms. The term-doc matrix produced 
using idftf ⋅  is rank reduced according to singular value 
decomposition. The resulting vectors help to make the implicit 
latent semantic information explicit. 

2.3 Token Association Discovery 
It is a straight-forward task to convert a set of vectors describing 
documents into a set of vectors describing terms. By looking 
down the columns, one sees the vectors as adjusted by LSA. By 
looking across the rows, one sees a different vector for each 
term. We clustered these resulting vectors associated with each 
term. The process was as follows: 

1. Based on the tokens and the associated information generated 
by the token discovery algorithm, create a machine-readable 
lexicon file in which each line contains two elements: token 
identifier and a token. 

2. Using the lexicon file produced in step (1) convert each 
document in the training corpus to a vectorV , whereby the 
dimension of V  = number of unique tokens in the lexicon. 
Each element in a vector would be a weight corresponding to the 
token for that position derived according to the idftf  formula 
presented as equation 1 above. 

3. The vectors produced in 2 above form a term-document 
matrix. From the matrix, term vectors are generated by 
considering all the weights corresponding to a term as 
represented in all the documents in the set. To start off the 
procedure, a term-by-term matrix is produced containing the 
distances among the term vectors. To calculate the distance the 
equation 2 below is used. Then the first vector in the set is 
selected as the initial centroid. 
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4. The vector that is farthest from the initial centroid is selected 
as the next centroid. 

5. Compute the distance from each remaining vector to the two 
centroids and for every pair of the output of the computations 
save the minimum one. Then select the maximum from the 
saved minimum distances. If the maximum distance is an 
appreciable fraction of the distance between the two existing 
centroids (controlled by a user-selected parameter θ , for e.g., a 
value of 7.0 ), then select the vector that had the maximum 
distance as the new centroid; otherwise halt the procedure and 
skip the next step. 

6. Compute the distance from the rest of the vectors to the 
existing centroids, and from the output produced for each 
computation save the minimum for each vector. Choose the 
maximum from the saved minimum distances and compare it 
with an appreciable fraction of the typical distance among the 
three centroids (e.g., average is a good measure). If the 
maximum is higher then the corresponding vector becomes the 
new centroid, otherwise halt and go to next step. 

Repeat step (6) for the current centroids and remaining term 
vectors until a maximum distance fails to exceed the appreciable 
fraction of the typical distance among the existing centroids. 

7. Find, for each remaining term vector, the “nearest” centroid 
and group that vector under the centroid as its cluster member.  

The general function of the algorithm is two-fold: (1) to identify 
tokens that are associated with each other in the corpus in terms 
of how they group or associate with centroids, and (2) to identify 
specific groups of tokens, collectively represented as centroids, 
that are different from each other in terms of their separation as 
individual clusters. It is hoped that this dual outcome would 
show for individual tokens their most relevant semantic 
“neighbors” in single centroids or sometimes more interestingly 
in multiple centroids.  

3. AN INTERACTIVE VERSION OF 
VCGS 
The web-based interactive system called LUCAS is a 
demonstration of the algorithms we described above. It is a 
servlet running under Apache-Tomcat server in Red Hat Linux 
7.2. Users can manipulate various parameters controlling the 
process explained above for generating clusters: token 
generation, token validation, and token clustering. The 
interactive version of this program can be found at: 
http://lair3.slis.indiana.edu:8080/servlet/sifter.app.cd.vcgs. 
Screen shot of the interactive system is shown in figure 1. 

4. EXPERIMENTS 
We conducted experiments to see how well our system could be 
used to discover relationships among genes and proteins from 
cancer literature available on the WWW. We considered 5,338 
titles and abstracts from the online Pubmed database at 
www.pubmed.gov. These titles and abstracts were chosen 
specifically because they contain cancer related gene names. We 
collected 98 cancer related gene names from 
http://www.ndsu.nodak.edu/instruct/mcclean/plsc431/cellcycle/c
ellcycl7.htm which came from the Online Mendelian Inheritance 

of Man (OMIM). We searched the Pubmed database for those 
gene names, limiting the searches to the title and abstract fields. 

Clusters were created using the methodology outlined above. 

 
Figure 1: Screen shot of interactive visualization of VCGS 

(LUCAS) 
We were interested in measuring how well this system clustered 
related terms. To analyze the validity of these clusters, we 
computed overlap. Two terms are said to overlap if they co-
occur in an entry in the Swiss-Prot protein database. We 
computed the average largest overlap in all the clusters returned 
from the maximin clustering. A large overlap is good because it 
means that like terms are clustered together. However, since 
varying parameters in our experiments also varies the number 
and sizes of clusters, it is not enough to measure only the 
average size of the overlap. A very large cluster could produce a 
large overlap, but also contain many terms that are not related. 
To account for this, the key result we were interested in is the 
average ratio of the largest overlap to cluster size across all 
clusters for a given test. A ratio of 1.0 would mean that all of the 
terms in each cluster are related according to the protein 
database. A ratio of 0.5 would mean that, on average, one half of 
the terms in each cluster were related to one another.  

 
Figure 2: Varying Rank 
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Figure 3: Varying number of terms 

We also looked at the effects of varying the number of terms 
chosen to be in the lexicon. This also had an impact on the 
overlap ratio. The results are shown in figure 3. What this shows 
is that a greater overlap ratio is achievable as the number of 
terms increase. As more terms are included in the 
term/document matrix, the matrix contains more latent semantic 
information. Because of this, when the matrix is rank reduced, it 
is better able to create similar vectors for similar terms. 

5. CONCLUSIONS 
We have implemented VCGS (Vocabulary Cluster Generating 
System), a system that automatically extracts and determines 
associations among tokens from cancer literature collected from 
Pubmed. Based on VCGS we implemented an interactive web-
based association discovery system called LUCAS to aid 
biomedical researchers to identify useful links among key  
concepts. We have presented the working prototype of both 
systems, and investigated the effectiveness of the implemented 
algorithms in identifying token association. A general finding 
was that the implemented algorithms are stable, robust, and are 
capable of providing useful results. A more specific finding was 
that LSA is an effective technique for extracting relevant 
associations among terms and that by varying different 
parameters, one can change the effectiveness of the system. 
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