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Abstract—We study decentralized searches in large-scale, self-
organized peer-to-peer networks and investigate the influences
of network size and degree distribution (neighborhood size) on
search efficiency. Experimental results show that searches are
efficient and scalable in large networks, especially with large
neighborhood sizes (degrees). Analysis of the data supports
a proposed scalability model, in which search path length L
(efficiency) is proportional to a poly-logarithmic function of
network size N , with degree dm (majority neighborhood size)
as the log base. The model explains 90% (R2) of variances in
search path lengths. Search time (search path length) predicted
by the model shows great potential for efficient searches in real-
scale networks of up to a billion distributed systems.
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I. INTRODUCTION

Decentralization is the nature of many naturally, socially,
and technologically grown structures that scale. The Web and
the Internet operate in a rather decentralized manner without
explicit global control. On the Internet, fundamental technolo-
gies such as routing and lookup operations are decentralized
by design and are able to scale with the rapid growth of the
network. According to Vint Cerf, the decentralized nature of
the Internet is a feature of its resilience and scalability [4].

From the perspective of the Internet of everything, where
any tiny gadgets and daily items can be attached to a highly
interconnected digital world, the question of finding relevant
pieces of information about and on these devices is stag-
geringly challenging. While centralization is likely to fail
in the long term, decentralization represents the future of
technological innovation; searching is an essential part of the
trend.

Our research envisions a fully decentralized architecture in
which individual search engines can interconnect and con-
tribute to the collective power of finding relevant information,
through distributed routing or network traversal. The goal
of this research is to understand the general mechanisms
by which a large number of distributed systems can work
together to support scalable search and retrieval operations.
It aims to explore alternative search engine architectures that
can function, scale, and cope with the increasing magnitude
and dynamics of networks such as the Web.

II. RELATED WORK

Related challenges facing distributed or decentralized
searches have been studied in areas of distributed (federated)
information retrieval, peer-to-peer networks, multi-agent sys-
tems, and complex networks [3], [13]. Classic distributed IR
research has focused on distributed database content and char-
acteristics discovery, database selection, and result fusion in a
relatively small number of distributed, persistent information
collections [7], [19], [15], [18].

Peer-to-peer IR research often involves a larger number
of distributed systems which dynamically join and leave the
community. Related projects have employed techniques such
as distributed hashing tables (DHTs) in structured P2P net-
works and semantic overlay networks (SONs) in unstructured
networks for efficient discovery [3], [20], [5]. Agent-based
modeling has proven to be a powerful tool in distributed
information retrieval (IR) research [8]. The agent paradigm
has been extensively used to model processes such as P2P
search [21], intelligent crawling [16], and expert finding [12].

The central idea of peer segmentation or clustering in
frameworks such as SONs to support efficient decentralized
searches has also been studied in complex network research.
In networks with small world properties, studies have demon-
strated that globally relevant targets can be found efficiently
through collaboration of distributed, local intelligence in large
networks [17], [14], [2].

Our research has studied related decentralized/distributed
information retrieval problems in light of network formation
and clustering, emergent from interconnectivity among dis-
tributed systems. In a series of large-scale IR experiments
we conducted, network clustering based on semantic overlay
was found to be useful for decentralized searches, however,
with qualifications [9], [10]. The best search efficiency and
effectiveness were supported by a very specific level of net-
work clustering. Any departure from that fine-tuned level, i.e.
stronger or weaker clustering, degraded search performance
significantly [11]. So far we have investigated related networks
of various sizes using multi-agent simulation. Results from
these studies showed very promising search performances.
However, further investigation is needed to understand other
network structure variables’ impact on search scalability.



III. FOCUS ON SEARCH SCALABILITY

In this research, we simulate classic IR operations in a
distributed setting and study search performances with regard
to the following research aspects: 1) the impact of network
size N on search efficiency , 2) the impact of agent (local)
neighborhood size Nr on search efficiency in various sizes
of networks, and 3) projection of decentralized search perfor-
mance (efficiency in particular) when the network continues
to grow.

A. Proposed Scalability Model

This study is focused on search efficiency and scalability
with growing network sizes N and varied (distributed sys-
tem) neighborhood sizes d (degree distributions) with optimal
network clustering. We expect to validate a scalability model
which will enable us to project search efficiency in web-scale
networks. We discuss the model below.

Let L denote search path length, i.e. the number of hops
(distributed systems) a search query traverses the network to
reach a desired target (with relevant information). According to
[13] and several studies in distributed IR, when network clus-
tering is optimal, a reasonable relation between L̂ (expected
value of L based on relevance/similarity searches) and network
size N (the number of distributed systems in the network) is:

L̂ = β′ · (logbN)λ (1)

where β′ is a constant and b is the logarithmic base. λ is
an exponent parameter to be identified with empirical data.

Assume the majority of distributed systems (hops) have a
neighborhood size (number of interconnected systems) dm.
Let Lg denotes the ideal search path length given a (imagined)
perfect, global index of all distributed systems. For example,
when degree dm = 2, Lg can be seen as the number of steps
needed to perform a binary search (traversal of a binary tree)
on N nodes. With a sorted binary tree (dm = 2), it is known
that the number of nodes/branches to be traversed in a search
among N nodes is log2(N). Likewise, with a tree in which
each nodes has dm branches, the ideal search path length Lg
can be computed by:

Lg = logdm N (2)

Without a global index discussed above, searches will
become less efficient. In this case we expect a longer search
path length in a distributed network. We reason that the
expected search path length L̂ is greater than and is no longer
a linear function to logdm N . In light of Equation 1, it should
be a poly-logarithmic function of N or a power function
of logdm N (i.e. using dm as the logarithmic base). Hence,
Equation 1 becomes:

L̂ = β · (logdm N)λ (3)

= β · (logN/ log dm)λ (4)

where β is a constant and dm the neighborhood size (degree)
of majority distributed systems. To simulate real networks, a
power-law function will be used for degree distribution d ∈
[dm, dx], where dm is the min degree (which the vast majority
have in a power law) and dx is the maximum value (which
only a small number of nodes have).

In this study, we expect to validate the above scalability
model with large-scale experiments, identify the exponent λ,
estimate the β coefficient with varied N and dm settings, and
predict potential search efficiency in real-scale environments
with millions to billions of distributed systems.

IV. SIMULATION FRAMEWORK AND ALGORITHMS

We have developed a decentralized search simulation frame-
work based on multi-agent systems for finding relevant infor-
mation in distributed settings. Each agent represents an IR
system, which has its document collection and can connect
to others to route queries. The simulation system was imple-
mented in Java the multi-agent system JADE [1] and full-text
search library Lucene [6].

In the simulation framework, each agent builds an index
on a local document collection and connects to a number of
neighbors (a variable in this study) for help with unanswered
queries. When an agent receives a query/task, it first searches
its local collection and, if the result is unsatisfactory, forwards
the query to one of its neighbors most likely to have relevant
information. The query routing continues until relevant results
have been found or when it reaches a limit (i.e. max search
path length). Further details on the simulation framework can
be found in [11].

The subsections below elaborate on specific algorithms
implemented in the framework for 1) information represen-
tation and weighting (to represent documents and queries), 2)
neighbor (agent) representation, 3) neighbor selection (search)
method, and 4) a network interconnectivity (clustering) func-
tion.

A. Basic Functions

1) TF*IDF Information Representation: Each agent pro-
cesses information it individually has and produces a local
term space, which is used to represent each information
item using the classic TF*IDF (Term Frequency * Inverse
Document Frequency) weighting scheme. Note that IDF values
are based on the agent’s local collection.

2) DF*INF Neighbor Representation: An agent uses a
meta-document to represent each of its neighbors. The weight
of term t in a meta-document is computed by: W ′(t) =

df ′(t) · log( N ′
b

nf ′(t) ), where df ′(t) is the number of documents
in the neighbor agent (collection) containing term t, N ′b is the
total number of the agent’s neighbors (meta-documents), and
nf ′(t) is the number of neighbors containing the term t. We
refer to this function as DF*INF, or Document Frequency *
Inverse Neighbor Frequency.



3) Similarity Scoring Function: Given a query q, the simi-
larity score of a document d matching the query is computed
by:

∑
t∈qW (t) · coord(q, d) · queryNorm(q), where W (t) is

the weight of term t given by the above TF*IDF or DF*INF,
coord(q, d) a coordination factor based on the number of terms
shared by q and d, and queryNorm(q) a normalization value
for query q given the sum of squared weights of query terms.
This scoring function is used to compute query-document
similarities as well as query-metadocument (query-neighbor)
similarities.

B. Neighbor Selection (Search) Methods

We use the following strategies to decide which neighbors
should be contacted for the query: 1) Random Walk (RW),
2) SIM Search which selects the neighbor with the highest
similarity score, 3) DEG Search which selects the one with
the highest degree, and 4) Sim*Deg which combines similarity
and degree scores to determine the best neighbor.

C. Interconnectivity and Network Clustering

To interconnect agents, the first step is to determine how
many links (degree du) each distributed agent/system u should
have. Once the degree is determined, the system will interact
with a large number of other systems (from a random pool) and
select only du systems as neighbors based on a connectivity
probability function guided by the clustering exponent α.
Based on the ClueWeb data, given the number of incoming
hyperlinks d′u of system/site u, the normalized degree is
computed by:

du = dm +
(dx − dm) · (d′u − d′m)

d′x − d′m
(5)

where d′x is the maximum degree value in the hyperlink
in-degree distribution and d′m the minimum value in the
same distribution. Once degree du is determined from the
degree distribution, a number of random systems/agents will
be added to its neighborhood pool such that the total number
of neighbors d̂u � du (d̂u = 1, 000 in this study). Then, the
agent in question (u) queries each of the d̂u neighbors (v)
to determine their topical distance ruv . Finally, the following
connection probability function is used by system u to decide
who should remain as neighbors (to build the interconnectivity
overlay):

puv ∝ r−αuv (6)

where α is the clustering exponent and ruv the pairwise
topical (search) distance. The finalized neighborhood size
will be the expected number of neighbors, i.e., du. With
a positive α value, the larger the topical distance, the less
likely two systems/agents will connect. Large α values lead to
highly clustered networks while small values produce random
networks with many topically remote connections.

V. EXPERIMENTAL DESIGN

A. Data Collection

We use the ClueWeb09 Category B collection in ex-
periments, which contains 428,136,613 nodes (pages) and
454,075,604 edges (hyper-links). Additional details about the
ClueWeb09 collection can be found at http://boston.lti.cs.cmu.
edu/Data/clueweb09/. Using the ClueWeb09 collection, we
treat a web site/domain as a distributed system/agent and use
hyperlinks between sites to construct the initial network.

B. Search Task - Rare Item Search

We rely on existing evidence in data to do automatic
relevance judgment. We use documents (with title and content)
as queries for decentralized searches. From the first 1000
web domains constructed above, we select as queries 12
random web pages with at least 3 in-links. The final set of
query documents include (all trecids with prefix clueweb09-
en000): 1-42-03978, 1-73-04287, 1-90-26216, 2-73-04700, 2-
91-14776, 3-27-30577, 3-30-28328, 3-51-10345, 3-55-31539,
4-61-19060, 4-72-24215, 4-92-04942. The search task is to
find the exact copy of a given document (query) distributed in
the network.

C. Variables

1) Network Model and Sizes: We first construct a list of
all web domains in the category B subset with at least one in-
link in the provided web graph. We take the first 1000 web do-
mains/sites to construct the 1000-system network and extend it
to 2000, 5000, 104, and 105 systems in additional experiments.
Network clustering is performed using the method described
in Section IV-C to establish individual system neighborhoods.
We use clustering exponent α = 2 in experiments.

2) Degree Distribution: [dm, dx]: We use various degree
ranges du ∈ [4, 8], [16, 64], [64, 128], and [256, 512], to
examine the impact of degree distribution (neighborhood size)
on decentralized searches. Note that with a power-law distri-
bution, the min degree dm which defines the lower-bound of
the range is actually the degree value (neighborhood size) that
the majority of nodes/systems have.

3) Maximum Search Path Length Lmax: The maximum
search path length Lmax specifies the longest search path
(TTL) allowed for query traversal. With our focus on search
efficiency/scalability, we set Lmax as the total number of sys-
tems N in experiments to achieve best possible effectiveness.

4) Parameter Settings: We use full combinations of the
following variables/parameters in experiments, i.e., 5 (network
sizes N ∈ [1000, 2000, 5000, 104, 105]) × 4 (degree ranges
d ∈ [4, 8], [16, 64], [64, 128], [256, 512]) × 4 (search methods
RW, SIM, DEG, and SimDeg).

D. Evaluation

To evaluate effectiveness, we use the classic metric F1 based
on precision and recall: F1 = 2PR/(P +R), averaged for all
queries. For efficiency, we use the average search path length
L of all queries. For scalability analysis, we run experiments
on different network size scales. Search path length L as



a function to network size N and neighborhood size dm
(proposed in Equation 4) will be modeled and analyzed with
experimental data.

VI. RESULTS

Experimental results show that searches were efficient and
scalable in large networks, especially with large neighborhood
sizes (degrees). Analysis of the data supports the proposed
scalability model (Equation 4), in which search path length
(efficiency) is proportional to (logdm N)λ, where dm is the
majority degree value (neighborhood size) and N is the num-
ber of distributed systems in the network. The model explains
90% (R2) of variances in search path lengths. Efficiency
(search path length) values predicted by the model show great
promise for search scalability in real-scale networks, e.g., of a
billion distributed systems. We discuss detailed results below.

A. Influences of Neighborhood Size

Figures 1 (a), (b), (c), and (d) show effectiveness of the ex-
perimented search methods in the 1000-, 2000-, 10, 000-, and
100, 000-system networks respectively. Each sub-figure plots
effectiveness (F1) vs. neighborhood size dm ∈ [4, 16, 64, 256].
In most experimental settings, SIM, DEG, and SIM*DEG
methods achieved perfect effectiveness scores F1 = 1.0 and
greatly outperformed the RW baseline. Overall, effectiveness
improved when larger dm degree values. The superior effec-
tiveness was due to the fact that maximum search path length
(TTL) was set to be the total number of distributed systems
in the network, allowing searches to traverse the network
thoroughly.

Figures 2 (a), (b), (c), and (d) show the search methods’ ef-
ficiency in terms of search path lengths. Each sub-figure plots
efficiency (search path length) vs. neighborhood size dm (on
log/log coordinates). The RW baseline stays roughly constant
for different dm values because it was not selective in the
search process even when there were more neighbors to col-
laborate with. SIM, DEG, and SimDeg methods all achieved
much better efficiency with larger neighborhoods/degrees. For
example, when degree dm increased from 16 to 256 (a 16-
time increase), SIM search efficiency improved from more
than 10, 000 hops to roughly 200 hops in the 100, 000-system
network (a 50-time improvement).

B. Influences of Network Size

Figures 3 and 4 present the effectiveness and efficiency
results from a different perspective. Each sub-figure in Fig-
ure 3 plots effectiveness F1 vs. network size N for a given
neighborhood size (degree) dm = 4, 16, 64, or 256. In sub-
figures (c) and (d), SIM, DEG, and SimDeg achieved perfect
F1 scores with large degree dm values (64 and 256). RW
baseline effectiveness was much worse.

Figure 4 sub-figures plot efficiency (search path length) vs.
network size N . In these sub-figures, when network size N
increased, search efficiency degraded (with larger search path
lengths). SIM (as well as DEG and SimDeg) consistently

outperformed the RW baseline in all settings. The propor-
tional performance difference was much greater with larger
neighborhood size dm (e.g., compare dm = 256 and dm = 4
sub-figures). In the 100, 000-system network with dm = 256
(in sub-figure (d)), for example, SIM search path length was
about 200 whereas the search path length for RW baseline was
around 80, 000 (a 400-time difference).

C. Scalability of Searches

With the proposed scalability function in Equation 4, we
relied on a generalized regression model to analyze data,
validate the model, and estimate related parameters. Using
L̂ ∼ β · (logN/ log dm)λ, we modeled experimental results
of SIM searches with different exponents λ ∈ [2..10] in the
BoxCox process. The best fit was achived by λ = 7, with
model estimates in Table I:

Model: L ∼ 0 + β(logdm N)7

Coef Estimate Std Error t value Pr(> |t|)
β 0.0105 0.000365 28.9 5.8E−47 ***
R2 = 0.903 (adj. 0.902), F = 833 on 1 and 89 DF

TABLE I
SIM SEARCH: SEARCH PATH LENGTH VS. NETWORK SIZE. L IS SEARCH
PATH LENGTH; N IS NETWORK SIZE; dm IS THE (MIN) NEIGHBORHOOD

SIZE (NUMBER OF NEIGHBORS).

As shown in Table I, the resulted model L̂ = 0.0105 ·
(logdm N)7 has a very large coefficient of determination:
R2 = 0.903. Figure 5 shows observed data of SIM searches
in experiments and expected data using estimates in Table I.
Except for a couple of outliers, the model fits observed data
very well.
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(a) Experimented data (b) Predicted data
Fig. 5. (a) Experimented scalability of SIM Search: Search path length vs.
logdm N , where N is network size and dm is (min) neighborhood size. (b)
Predicted scalability of SIM Search in real-scale networks of up to a billion
systems (N ∈ [105..109]). X denotes network size (log-transformed); Y is
predicted search path length for SIM search.

D. Model Prediction and Implications

Overall the scalability analysis supports search path length
L as a poly-logarithmic function to network size N with
neighborhood size (degree) dm as the log base – that is L̂
can be estimated by β(logdm N)λ.
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Fig. 1. Effectiveness vs. neighborhood size with varied network sizes. X denotes (min) neighborhood sizes dm ∈ [4, 16, 64, 256]. Y denotes search
effectiveness F1. X is log-transformed.
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Fig. 2. Efficiency vs. neighborhood size with varied network sizes. X denotes (min) neighborhood sizes dm ∈ [4, 16, 64, 256]. Y denotes search path length
L (efficiency). Both X and Y are log-transformed.
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Fig. 3. Effectiveness vs. network sizes with varied neighborhood sizes. X denotes network size N ∈ [1000, 2000, 5000, 10000, 100000]. Y denotes search
effectiveness F1. X is log-transformed.

The model L = 0.0105(logdm N)7 based on coefficients
in Table I can help estimate search efficiency (in terms of
search path lengths) in real-scale networks with an even
greater number of distributed systems. Given the model,
Figure 5 (b) plots predicted data of search path length L
vs. network size N for various degrees (neighborhood sizes)
dm ∈ [100, 200, 400, 800].

As shown in Figure 5 (b), with degree dm = 400 in a
million-system network and dm = 800 in a billion-system
network, it is predicted to take less than 100 hops to locate
a desired target. This efficiency and scalability is achieved
by distributed systems that self-organize into a searchable
network without global control.

Due to variances in data and model inaccuracy, actual search
path lengths may vary significantly. Nonetheless, numbers
predicted by the model point to the potential level of search

efficiency/scalability. They show a great potential for fully dis-
tributed/decentralized searches to scale in growing information
networks. In the future, we plan to conduct experiments on
even larger-scale networks (such as networks of a million and
more agents) and to verify the scalability prediction in this
study.

VII. CONCLUSION

We studied decentralized searches in large-scale, self-
organized information networks and investigated the influences
of network size and degree distribution (neighborhood size) on
search efficiency. Experimental results show that searches were
efficient and scalable in large networks, especially with large
neighborhood sizes (degrees). Analysis of the data supports
the proposed scalability model, in which search path length
(efficiency) is proportional to (logdm N)λ, where dm is the
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Fig. 4. Efficiency vs. network sizes with varied neighborhood sizes. X denotes network size N ∈ [1000, 2000, 5000, 10000, 100000]. Y denotes search
path length L (efficiency). Both X and Y are log-transformed.

majority degree value (neighborhood size) and N is the num-
ber of distributed systems in the network. The model explains
90% (R2) of variances in search path lengths. Efficiency
(search path length) values predicted by the model show the
great potential of search scalability in real-scale networks
without central control or global knowledge.

Given the nature of decentralization and increasing chal-
lenges of big-data in the digital world, the future of in-
formation technology lies in decentralized methods that can
adapt and scale. In this vision, a decentralized information
retrieval architecture will over time provide better search
results and scale more gracefully than today’s “monolithic”
search engines employed on the Web. The presented scalability
model and related results offer important insight into how
such a decentralized search architecture can scale with network
growth. In future research, we plan to scale up our experiments
to one million agents and to verify the efficiency projection
presented in this paper based on the million scale. We will also
investigate issues such as network congestion and failures in
the distributed search setting.
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