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We investigate the modeling of changes in user interest
in information filtering systems. A new technique for
tracking user interest shifts based on a Bayesian ap-
proach is developed. The interest tracker is integrated
into a profile learning module of a filtering system. We
present an analytical study to establish the rate of con-
vergence for the profile learning with and without the
user interest tracking component. We examine the rela-
tionship among degree of shift, cost of detection error,
and time needed for detection. To study the effect of
different patterns of interest shift on system perfor-
mance we also conducted several filtering experiments.
Generally, the findings show that the Bayesian approach
is a feasible and effective technique for modeling user
interest shift.

Introduction

A growing number of people have come to depend on
online information sources for their professional careers,
news, shopping, and even entertainment. The popularity of
online sources has been sustained by drastic decreases in
computer hardware and software costs, as well as conve-
nient access to the World Wide Web. With the rapid in-
crease in number of sources and volume of on-line infor-
mation a critical demand now exists for personalized infor-
mation delivery (Foltz & Dumais, 1992; Maes, 1995).
Filtering systems attempt to fulfill the personalization de-
mand by refining the information flow based on long-term
and stable information needs of users (Belkin & Croft,
1992). The interest of users are represented in filtering
systems as internal structures known as interest profiles.

Maintaining fidelity in the interest profile in relation to
the actual needs of the user is a key problem in filtering

systems. This problem is made challenging due to the fol-
lowing complex constraints of the environment:

1. After exposure to different types of information, a user’s
interest may expand to include new areas or contract to
become more specific. Depending on the user, these
changes may happen rapidly or take place gradually.

2. A user’s interest in the content-domain is directly influ-
enced by his or her situation in the world. With drastic
changes in situations, existing interest may degrade or
new interest may develop.

3. The domain upon which filtering is performed may also
change in unpredictable ways, depending on new discov-
eries, findings, or inventions. Such changes may induce
the user to shift his or her interest.

The notion of long-term and stable information need, if
taken too literally, can make the system excessively “brittle”
in relation to the above changes. This, in turn, can cause
diminished system performance. A user’s interest, there-
fore, requires ongoing tracking, and to maintain compati-
bility with the actual interest the profile may require occa-
sional revision. A key question then is: how should such
revisions occur? In our previous work, we have developed
a document filtering system for profile learning (Mostafa,
Mukhopadhyay, Lam, & Palakal, 1997). In this article we
present a user interest tracking model on top of our previous
profile learning approach. It employs a Bayesian method for
analyzing relevance feedback from users. The Bayesian
tracker is responsible for detecting interest changes and
revising interest profiles accordingly. We conduct analysis
to clarify the role of the Bayesian approach in the overall
filtering process and explain the range of its behavior. In
evaluating the utility of this approach, another important
question arises: how do different patterns of interest shift
(degree and scope) influence system performance? We take
our analysis further and conduct several filtering experi-
ments in an attempt to answer this question as well.
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In the next subsection a brief survey of related literature
is presented. In the Document Filtering System section, an
overview of the filtering process, as modeled and imple-
mented in this research, is presented. Interest profile learn-
ing, tracking, and revision are covered in the User Profile
Learning section. An analytical study is presented in the
Analytical Study section to identify the cost associated with
reconvergence to an optimal profile with or without the
tracking scheme. The Simulation Studies section presents
results of experiments to identify the relationship among
degree of shifts, cost and detection time. In the Filtering
Experiments subsection, the practical utility of the interest
tracking system is evaluated based on a series of filtering
experiments. The article ends with a discussion of the major
findings and prospective future research directions.

Survey of Related Research

Generally, the literature covering significant aspects of
filtering is quite large and diverse. Here, we highlight a few
of the major techniques and research findings that are
closely related to the main theme of the article.

After users are presented with a retrieved set of docu-
ments, certain systems permit revision of the original query
based on user’s identification of particular documents as
relevant. This technique is called query refinement by rel-
evance feedback (Salton & McGill, 1983). Goker and Mc-
Cluskey (1991) have extended the technique to generate a
more durable representation, called “user-context,” based
on terms from all relevance feedback episodes that may
occur in different sessions. The user-context is similar to a
simple interest profile, containing stemmed terms, fre-
quency, and weight. Expert evaluation of user-contexts and
comparison with an alternative method for query refinement
showed that the context approach holds promise in improv-
ing document retrieval. In a research conducted by Foltz and
Dumais (1992), profiles were created using key words di-
rectly gathered from users and indirectly from highly rated
documents (relevance feedback). Then, to conduct filtering,
profiles were compared with documents in two ways: match
between comprehensive weighted term vectors, and match
between reduced dimension vectors based on latent seman-
tic indexing (LSI). It was found that the profiles containing
keywords gathered through relevance feedback and with
dimensionality reduced using LSI produced the best results.

The annual TREC (Text REtrieval Conference) initia-
tive, sponsored by the National Institute for Standards and
Technology (NIST), attempts to gather consistent and more
generalizable evidence of retrieval performance based on a
standard document collection. Because TREC-4, a new
track known as the filtering track has been introduced (Hull
& Robertson, 1999). A research group can participate in
three subtasks under the filtering track: adaptive, batch, and
routing. The user profiles in all the subtasks are created
based on information need descriptions called topics. The
TREC documents have been preassessed to establish their
relevance in relation to each topic. Given a subset of the

collection, called the training document set,1 in the batch
and the routing tasks the profile is usually generated off-line
based on a suitable learning procedure. A second document
subset, called the testing set, is used for evaluation. In the
batch evaluation task the profiles are applied to arrive at a
binary choice, relevant or nonrelevant, for each test docu-
ment, and in the routing task the profiles are used to rank
test documents according to their relative relevance. The
adaptive task differs from the other two tasks in that no
training documents are provided. The adaptive system is
supposed to start with initial test topics as profiles and
determine for each incoming document from the test set if
the document is relevant or nonrelevant. If the document is
predicted as a relevant one, the system can receive the
preassessed true relevance judgment for that document. The
true relevance judgment can then be used to adaptively fine
tune the profile. A utility based measure known as linear
utility function (LF) is the metric used for measuring the
performance. LF assigns a cost or value to each document
measured in terms of the following factors: (1) relevant or
nonrelevant, and (2) retrieved or not retrieved. To normalize
scores across topics a scaling function is applied on each
topic’s LF score before averaging (Hull & Robertson,
1999). In the recent TREC-8, 14 research groups partici-
pated in the filtering track. In the adaptive filtering task, no
group performed better than the baseline, but the University
of Iowa research group, using a dynamic clustering ap-
proach, achieved the best LF1 result (threshold for retrieval
is 0.4). Based on the more liberal LF2 measure (threshold
for retrieval is 0.25), five groups performed above baseline,
and the University of Twente, using a probabilistic retrieval
model, produced the best result.2

Pazzani and Billsus (1997) described a method of profile
acquisition that is based on user’s identification of Web
documents as “hot” or “cold.” Using a set of 128 features
(words) extracted from a training sample, the profiles were
implemented as classifiers that could establish for new
documents their membership in the “hot” or “cold” class. A
comparison of several different classifiers, including the
ID3 decision-tree, nearest neighbor, and neural networks,
showed that two particular classifiers, the Bayesian and the
Rocchio relevance feedback methods, outperformed the
others. In their research, the feature weights used in the
Bayesian method were binary values (0 or 1), whereas
the Rocchio method used term-frequencies calibrated by the
tf.idf approach (Salton & McGill, 1983). Jennings and
Higuchi (1992) developed the profile based exclusively on a
multilayer neural network method. In the neural network
each node represented a particular word and the node
weight was determined based on documents read or re-

1 Relevance judgment associated with each document in the training set
can be used by the system to generate the initial profile.

2 Here, the adaptive filtering results are only reported, because this task
is most similar to the filtering method applied in this article. A compre-
hensive treatment of the results from the TREC-8 filtering track can be
found in Hull and Robertson (1999).
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jected. Nodes were linked to each other according to word
cooccurrence found in the documents read. The application
domain was Usenet News, and news documents were
ranked using the sum of weights of active nodes after a
matching process. Jennings and Higuchi (1992) argued that
the nonlinear approach to profile representation offered a
more nuanced and accurate way to capture user interest. The
evaluation results of document presentation over a 2-week
period showed that the system can successfully adapt to
certain interests, although there were significant initial de-
lays in acquiring useful profiles. Profile acquisition is dif-
ficult when user participation cannot be guaranteed or it is
perceived by users as burdensome. In such cases, other
sources of data must be relied upon to acquire the profiles.
Certain researchers have observed that in large networked
environments (such as the WWW) it is easy to identify
multiple users or user groups that share the same interest.
Hence, by correlating a minimal amount of user interest
with the interest of other users, a more comprehensive or
expansive profile can be generated. This means of profile
acquisition is applied by a particular type of systems known
as collaborative filters. In pure collaborative filters, there is
little or no content analysis conducted (e.g., no text repre-
sentation) by the computer (Balabanovic & Shoham, 1997);
the idea is to collect rating data based on user input and
aggregate the rating data to identify clusters of items simi-
larly rated by individuals. The independence from content,
allows the pure collaborative filter to deal with diverse
contents, such as image, video, music, etc. Balabanovic and
Shoham (1997), however, contend that a mixed mode of
filtering, one that combines collaborative rating with ongo-
ing relevance feedback collected directly from users is
necessary for overcoming delays in delivering new infor-
mation due to rating latency from group members.

Over a period of time a domain may go through radical
changes due to a wide variety of factors, ultimately affecting
the content of the documents in the stream. In the literature,
the general phenomenon of changes in the content of infor-
mation stream flowing into a filter or a classifier is referred
to as a concept drift. Widmar and Kubat (1996) studied
concept drift based on several different variants of their
FLORA (FLOating Rough Approximation) system. In
FLORA, the profile is represented as three sets of concept
descriptors, with each descriptor represented as logical con-
junction of attribute/value pairs. The ADES (Accepted DE-
scriptors) contains positive concepts, the NDES contains
negative concepts, and the PDES contains potentially pos-
itive concepts that are overly general and some negative
concepts. In the training mode, FLORA maintains a window
of sizen over the incoming labeled examples that it uses to
update the content of the three descriptor sets (the profile).
Widmar and Kubat presented results of several experiments
where they systematically varied the capability of the orig-
inal FLORA system. With FLORA2 they showed that dy-
namic adjustment of the window size is superior than a fixed
window, and with FLORA3, they demonstrated that main-
taining past concept descriptors and reusing them during

concept drifts involving recurring concepts may be effec-
tive. A final version called FLORA4 that had the features of
earlier versions and in addition monitored predictive per-
formance of individual descriptors in the profile was also
evaluated, and it was found that it was capable of distin-
guishing between occasional noise in the incoming stream
and actual concept drifts. Klikenberg and Renz (1998) also
investigated the phenomenon of concept drift. In their work,
they compared influence of fixed window size with dynamic
window size on eight different classification algorithms.
The classifiers analyzed were: Rocchio, Naive Bayesian,
PrTFIDF, K-nearest neighbor, Winnow, Support Vector
Machine, CN2, and C4.5. Instead of determining relevance
of documents one at a time, their classifiers established
relevance of documents for 20 batches, with each batch
containing 130 documents. Three measures were used, ac-
curacy, precision, and recall, and they found on all the
measures, the adaptive-window adjustment approach
achieved slightly higher average performance over fixed-
window approach. Klinkenberg and Renz also investigated
sudden change in interest (in contrast to gradual)—a phe-
nomenon they referred to as concept shift. For all classifiers,
the average performance of all measures were again slightly
higher for adaptive-window approach compared to fixed-
window approach. A closer analysis of both concept shift
and drift, with the CN2 algorithm, established that the
adaptive-window approach can quickly detect changes in
the information stream, and it generally provides more
stable performance than the other approaches.

A related problem area concerned with identification of
topical changes in a continuous stream of information is
called Topic Detection and Tracking (TDT). Research on
TDT concentrates on the domain of broadcast news that
may be communicated in multiple languages and distributed
in various formats (Fiscus, Doddington, Garofolo, & Mar-
tin, 1999). A varied set of problems are studied in TDT, but
two important ones are topic detection and tracking. In topic
detection the goal is to arrive at a binary decision on a story,
new or old, in a continuous stream of stories. Topic tracking
involves detecting all related stories to a particular topic in
a continuous stream of stories. The performance is charac-
terized in terms of the probability of miss and false alarm
errors. These error probabilities are then combined into a
single detection cost by assigning costs to miss and false
alarm errors. Carbonell, Yang, Lafferty, Brown, Pierce, &
Liu (1999) employed a single-pass incremental clustering
approach for the detection task and k-NN approach for the
tracking task. Papka, Allan, and Lavrenko (1999) investi-
gated both topic detection and tracking. In their topic de-
tection approach, they treated stories as queries. Queries
were represented using a variant of thetf.idf formula (Sal-
ton & McGill, 1983), combined with relevance feedback as
implemented in the Inquery system. They provided an al-
gorithm for maintaining queries in memory, matching que-
ries for detecting new topics, and revising the query mem-
ory according to the detection results. They also incorpo-
rated temporal information about stories in the similarity
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evaluation measure. To conduct topic tracking, they used
tf.idf for story representation. The task involved acquiring
a query from few initial stories and matching the query to
subsequent stories to determine their similarity to the inter-
nal story representation. It was found that as few as four
initial training stories can provide relatively good perfor-
mance on detecting subsequent related stories.

To sum up, we can state that certain interesting and
useful findings were uncovered among the techniques re-
viewed here. Relevance feedback seems to be a promising
technique in acquiring profiles, applied by a wide variety of
systems. Reducing system latency in acquiring the profile is
an important target for filtering systems. The research evi-
dence also showed that performance attained by computa-
tionally intensive batch-oriented learning methods and non-
linear methods can be matched by simpler techniques. In
this research, our approach integrates reinforcement learn-
ing based on relevance feedback with a Bayesian interest
tracker to conduct profile acquisition. An objective we treat
seriously is the minimization of system latency in acquiring
the profile. In many contexts, the user expects on-demand
and immediate service and, therefore, delay in acquiring the
profile may seriously hinder filtering utility. This constraint
would rule out certain batch-oriented techniques, as they
require a large amount of training samples and preestab-
lished relevance judgment. In our system, both the rein-
forcement learner and the Bayesian tracker utilize the same
relevance feedback data, and they are designed to function
concurrently with the provision of real-time filtering ser-
vice. Another area we pick up on and emphasize is system-
atic analysis of user interest shifts. Although, previous stud-
ies investigated concept and topic changes in the informa-
tion stream, we consider these only partially addressing the
issue of how changes in the filtering environment can affect
the profile. The user profile can be affected through self
initiative, interest, or concerns of the user, independent of
other changes in the environment. It is a problem area for
which we found little prior formal analysis. We believe
user’s interest shifts should be considered more explicitly
and directly in the profile acquisition process. We are in-
terested in pursuing how such shifts can be detected and the
profile accordingly adjusted. In this work we present several
analytical and simulation studies that consider the influence
of such shifts on the overall behavior of the system.

A Document Filtering System

The ultimate objective in filtering is to establish accurate
relevance assessment for each document in the collection.
Depending on the choice of presentation mode selected by
the user, documents can be pruned, grouped, or ranked
based on their relevance assessments. We have previously
developed a textual document filtering system in an ongoing
project SIFTER (Mostafa et al., 1997; Mukhopadhyay,
Mostofa, Palakal, Lam, Xue, & Hudli, 1996). It is assumed
that a user regularly receives documents (e.g., via e-mail or
Web-robots) that are placed in a predesignated document

“bin.” When the filtering system is invoked, its task is to
compare the internal profile with the contents of the bin, and
present to the user a ranked list of the new documents. We
refer to the system as passive, because the system does not
autonomously or actively seek out documents from external
sources, it merely sorts documents placed in its bin. The
internal profile does not contain information about individ-
ual documents. Rather, it contains information about a fixed
set of topical areas we call classes. More specifically, the
profile constitutes a user’s interest in a set of classes.

Upon execution of the system, the general process flow
involves: checking the bin for new documents, classifying
the documents to their classes, sorting the documents ac-
cording to the class-interest information in the profile, pre-
senting the documents, and finally collecting relevance
feedback on documents. Initially, the system has no infor-
mation about a user’s interest. The profile is learned based
on the relevance feedback generated for documents, which
in turn, is treated as the relevance feedback for the corre-
sponding classes. Instead of learning the interest directly
over documents or document components (e.g., words or
phrases), the interest is learned over classes due to the
following main reasons. In our view, classes are more stable
semantic units than individual words or phrases appearing
in documents. We used classes from the Medical Subject
Headings3 list. These classes, therefore, were authoritative
representations of subtopics in the domain of our concen-
tration. Another motivating factor for using classes was
simplification of profile management. The concise and sta-
ble nature of the classes meant the profiles could be limited
to a particular size, requiring only occasional changes (al-
though our system does permit revision of classes if neces-
sary). As depicted in Figure 1, the filtering system is mod-

3 Medical Subject Headings (MeSH) is a classification scheme pro-
duced by the National Library of Medicine (NLM) in the United States. We
selected a small subset of headings concerning the cell biology area. The
headings used in this research are shown in Table 2.

FIG. 1. Our document filtering system.
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eled as a multilevel process supported by three basic com-
ponents: (1) document classification, (2) user interest
learning, and (3) document presentation. Here, we present a
brief overview of these components.

The first module in the system performs the classification
task. The input to this process are documents and the output
are class labels for each document. We applied a fairly
straightforward procedure to achieve this. In this research,
the classification is accomplished by calculating the simi-
larity of a document to each class. This is conducted by
using the distance measure below that is based on the cosine
similarity formula as proposed by Salton and McGill
(1983).

1 2 O
i51

t

v izi/ÎSO
i51

t

v i
2DS O

i51

t

zi
2D (1)

The computation above involves calculating the similar-
ity between two vectors, where the vectorv i is the docu-
ment, and the vectorzi is a class. The two vectors were
based ont elements, where each element represented a term
(a single-word). There were 43 elements in each vector and
they were directly determined based on terms found in the
29 Medical Subject Headings selected for this research.
Generating the vector representation of documents involved
establishing for each document the frequency of the 43
relevant terms (we used a simple word-dictionary for this).
Each term-frequency (tf ) in the document vector was then
multiplied with an inverse-document frequency (idf ) cali-
bration measure (Salton & McGill, 1983). Theidf calibra-
tion measure for all terms in the dictionary were preestab-
lished based on a subset of the document corpus used in this
research. The calibration step is useful for “normalizing” the
effect of differences in number of documents processed
from session to session. For each class a corresponding
vector was created a priori, so that in the class vector
representation the relevant elements had a value of 1 and the
rest of the elements were set to 0.4

After the distance values were calculated for a document
by matching it with all the classes, the class producing the
smallest distance was selected as the target class. The se-
lected class label was then associated with the document
record for profile matching purposes.

After identifying the classes for all documents in a ses-
sion, the subsequent operation involves relevance assess-
ment of each document. This operation is conducted as part
of the user modeling component. It required modeling the

distribution of user interest over the set of fixed classes. To
generate and update this model, a particular scheme called
reinforcement learning (Narendra & Thathachar, 1989) was
adopted. In implementing this scheme, an estimated rele-
vance assessment vector and a class selection vector (both
of size equal to the number of classes, with each element
representing a class) were maintained and updated. Rele-
vance feedback on documents was applied to continually
update the internal user model. The relevance feedback was
also used to detect abrupt changes in interest. A tracking
component was developed to perform Bayesian analysis on
the pattern of feedback to detect shifts. One assumption of
our user modeling is that the number of classes is known in
advance. Nevertheless, this number is only required for the
internal user modeling and the user does not need to know
this information in the whole filtering process. More details
on the two significant user modeling subcomponents: profile
learning and shift-detection are presented in the next sec-
tion.

The presentation module is responsible for facilities that
allow the user to view the filtered documents in ranked,
grouped, or pruned form (ranked mode was selected for this
article). This component also permits an experimenter to
directly control how relevance feedback is generated. Our
implementation supported two major options: an autono-
mous mode (used in this article) and an interactive mode.
The autonomous mode was designed to provide filtering
service with minimal user intervention. In the autonomous
mode, the experimenter can enter an external static profile
(U) specifying a particular value 0–1.0 (inclusive) for each
class, which thereafter is used to automatically deduce the
relevance feedback. This is conducted probabilistically so
that documents belonging to classes with high interest val-
ues (near 1.0) inU would have a higher likelihood to
receive positive feedback than documents in classes with
low interest values (close to 0). In this scheme, the internal
user modeling is still supported, as it was designed to be
adaptive to changing filtering demands.

User Profile Learning and Tracking

The User Interest Learning Model

The user interest learning model is developed based on a
reinforcement scheme known as theLR2I model. In this
scheme, the system is conceived as a learning automaton
that is in a feedback configuration with the user (Narendra
& Thathachar, 1989). The system assumes a set ofm
predefined classes for documents. A “true” user interest or
relevance is modeled as a vectorU(t) 5 (u1(t), . . . ,
um(t)). Eachu i represents the true degree of relevance of a
document in classi . The system models the learning envi-
ronment in terms of estimated probabilities of relevance and
class selection probabilities. The probabilities of relevance,
represented as a vector maintained in the system, is the
internally estimated user profile:Û(t) 5 (û1(t), . . . ,
ûm(t)). The class selection probabilities are represented as a

4 The initial set of classes selected is dependent on the scope of the
domain coverage desired by the user. In our system, as part of the
initialization step, any type or number of classes can be selected (for, e.g.,
additional MeSH classes from the headings list). The shift detection algo-
rithm does not make any assumption about the initial number or type of
classes. However, in our present work, the detection algorithm does assume
that the classes remain fixed after system initialization. Please see the
Conclusion section for further discussion on this issue.
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second vector:Q(t) 5 (q1(t), . . . , qm(t)). In each session,
after documents are classified into individual classes, sort-
ing of documents takes place by examining the probability
values associated with the classes in both vectors. First, the
best class is selected based on the probability values of
classes in the class selection vectorQ. Then, the other
classes are rank-ordered according to their probability val-
ues in the estimated user profile vectorÛ. This ranking of
classes is used to determine the order of documents as
presented to the user. The relevance feedback provided to a
document is a binary value (1: a positive reaction feedback
and 0: a negative reaction feedback). The feedback for a
document is assumed to be a feedback for the corresponding
document class. Unlike other filtering systems, our class-
based framework is a simplification for the purpose of
developing a model and easy handling of changes in user
interests over time.

The learning takes place based solely on the relevance
feedback. In the interactive mode this feedback is directly
acquired from the user. Typically, a set of documents are
presented to the user in every filtering session. The user may
provide relevance feedback for certain documents in the
session.

In the autonomous mode the feedback is derived proba-
bilistically according to the externally provided profile (U).
Regardless of the origin, each feedback collected is used to
update the internally maintained estimated profileÛ. Sup-
pose a feedbackrc is received for the classc. rc is 0 or 1,
denoting a negative or positive feedback, respectively. The
elementûc in this vector is updated in the following man-
ner:

ûc~t 1 1! 5 ~ûc~t!t 1 r c!/~t 1 1!

In other words, theûc is actually the running average of
feedback received for the classc. If this feedback is posi-
tive, then the class selection vectorQ is updated in the
following way:

qi~t 1 1! 5 qi~t! 1 l~1 2 qi~t!! if i 5 c,

5 qi~t! 2 lqi~t! if i Þ c (2)

wherel is a suitably chosen learning rate and 0, l , 1.
If no positive feedback is received, then the vectorQ
remains unchanged. At the beginning of filtering sessions,
the class selection vector is initialized to contain equal
probability for all classes, i.e.,qi, (i 5 1, . . . ,n) are set to
be 1/n.

Two vectors,Û and Q, are maintained instead of just
usingÛ in our filtering model. This model possesses a nice
theoretical foundation drawn from theLR2I model in rein-
forcement learning. It can be guaranteed that the class
selection vectorQ converges to an unit vector where the
most favored class attains the highest value. By giving a
chance to documents from all the classes to be displayed at

the top, at least a few times during the convergence process,
the class selection probability vector permits additional
refinement and eventually more accurate reflection of the
user interest in the estimated profileÛ.

The User Interest Tracking Model

As mentioned above, there is a probability of relevance
associated with each class in the estimated user profile.
These probabilities of relevance capture the user interest for
the corresponding classes. The user interest learning model
presented in the previous section (LR2I) applies well if the
user interest is stationary. The user interest, however, may
shift due to the varied reasons outlined in the introductory
section. As theLR2I is conceived and implemented, it has
the capacity to relearn the shifted interest profile and re-
cover from an inappropriate converged state. In practice,
however, such relearning takes numerous iterations and
feedback cycles, and in the meantime, the performance
degrades drastically. Therefore, another strategy is needed
to detect and recover from shifts quickly. We present here a
user interest tracking model designed to support the neces-
sary functions.

The tracking is performed on each class separately. For
each class, there exists a history of user relevance feedback
data. The tracking scheme employs a Bayesian framework
to detect a shift in the probability of relevance based on the
feedback data. We first describe a model for which a single
shift has occurred at some point of time with a known prior
probability distribution of the time of shift. The objective is
to detect it quickly. When multiple shifts occur, the time
interval between two successive shifts is assumed to be
sufficiently large. This allows each shift detection problem
to be treated independently, and the time window over
which a shift can occur to be idealized as an infinite horizon
window.

Let r1, r2, . . . be a sequence of the feedback data given
by the user for a particular class. Eachr i is either 1 or 0,
governed by the underlying probability of relevance. Hence,
r i can be regarded as an independent Bernoulli random
variable where the probability of relevancer (i ) is the prob-
ability of “success” (i.e.,P(r i 5 1) 5 r (i )). Under this
framework, this problem can be viewed as detecting a shift
in the success probability in a sequence of Bernoulli trials.
We propose a Bayesian approach for this problem by com-
puting the posterior probability that a shift has occurred
given the feedback data. An upward shift in probability of
success from Bernoulli trials has been studied in (Zacks &
Barzily, 1981). Our shift detection approach makes exten-
sive use of the results from their work and extends it to
handle a downward shift as well.

Suppose a shift occurs at time instanceh. Let u andb be
the probability of relevance before and after an occurrence
of a shift respectively. We treath, u, and b as random
variables. Although we model the shift as a sharp one, this
technique is equally applicable to a gradual shift.
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One choice of the prior distribution forh is a geometric
prior distributionps(h), which is defined as:

ps~h! 5 ~1 2 s0!s1~1 2 s1!
h21

We defineps(0) 5 s0. s0 ands1 are the parameters of the
geometric distribution and 0, s0, s1 , 1. This geometric
distribution has the attractive property that the prior proba-
bility of a shift tails off ash3 `. It implies that the effect
of the prior distribution on the decision rule becomes neg-
ligible for largeh.

The parametersu and b have a prior distributionpd(u,
b) over the simplex 0, b 2 u , 1 for an upward shift and
0 , u 2 b , 1 for a downward shift. Without any prior
knowledge concerning the values of the probabilities of
relevance before and after the shift,pd(.,.) isassumed to be
uniform over the domain of support.

Consider a sequence of feedback dataRn 5 (r1, r2, . . . ,
rn), the likelihood function of (h, u, b) is:

L~h, u, buRn!

5 H uTh~1 2 u!h2ThbTn2Th~1 2 b!n2h2~Tn2Th! if h , n
uTn~1 2 u!n2Tn if h $ n

(3)

where Tj 5 ¥i51
j b i and T0 5 0. Our objective is to

compute the posterior probability of “a shift has occurred”
given the sequence of feedback dataRn. Denoting such
probability asS(Rn) (i.e., S(Rn) [ P((h , n)uRn)), we let
S(u)(Rn) and S(d)(Rn) be the posterior probability of an
occurrence of an upward and a downward shift respectively
given Rn. Using Bayes theorem, we can calculateS(u)(Rn)
as follows:

1 2 FS O
j5n

`

ps~j !D E
0

1 E
b

1

L~n, u, buRn!pd~u, b! du dbG /1

(4)

where1 is a normalization factor given by:

1 5 O
j50

`

@ps~j ! E
0

1 E
b

1

L~j , u, buRn!pd~u, b! du db# (5)

The details of the derivation are given in the Appendix.
As proved in Zacks and Barzily (1981), the sequence

S(u)(Rn) is a submartingale when the prior distribution
ps(h) is assumed to be geometric. This implies that asn3
`, the posterior probability of the shift approaches 1, and
the shift will be eventually detected. The rate of conver-
gence analysis presented in the Rate of Convergence Anal-
ysis section also assumes that a single shift has occurred,
and that it is correctly detected (i.e.,n, the window of
observation is sufficiently large).

For each classc, we computeSc
(u)(Rn) and Sc

(d)(Rn)
representing the posterior probability of an upward and a
downward shift, respectively, given the sequence of feed-
back dataRn. In practice, because of the finite choice ofn,
there will always be a nonzero probability of making a
wrong detection. This leads to the use of decision functions
with associated costs in practice as explained in the follow-
ing section.

Integrating the Tracking Model with the Learning Model

We introduce two cost quantities, namely the cost of
ignoring a shift (missed detection) and the cost of declaring
an unnecessary shift (false alarm). A decision function is
then formulated based on the shift probability and these two
cost quantities. This decision function is used for determin-
ing if the user interest learning model needs to be informed
so that appropriate reinitialization can take place.

The posterior probability (i.e.,Sc
(u)(Rn) or Sc

(d)(Rn)) is
the dominant parameter for this decision function. Basi-
cally, if Sc

(u)(Rn) is high, it is likely that we should declare
an upward shift for the classc. Similarly, if Sc

(d)(Rn) is high,
it is likely that we should declare a downward shift for the
classc. Let k1 be the cost of ignoring a shift that has already
occurred, andk2 be the cost of declaring an unnecessary
shift. Then, we define a cost ratiok computed ask2/k1,
which can be interpreted as the relative cost of declaring a
shift. Two decision functions, namelyFc

(u)(Rn) and
Fc

(d)(Rn) representing the decision of declaring an upward
and a downward shift respectively for each classc are
defined as:

Fc
~u!~Rn! 5 @Sc

~u!~Rn!#
k

Fc
~d!~Rn! 5 @Sc

~d!~Rn!#
k (6)

If k . 1, the decision functionFc grows in a slower
fashion thanSc. On the other hand, ifk , 1, Fc grows in
a faster fashion thanSc. Ask gets larger, the model becomes
cautious about declaring shifts. Ask gets smaller, the model
becomes very sensitive to potential shifts. The choice ofk
can be determined by the desired detection sensitivity in an
application. Finally, we set a thresholdFthreshold. If the
decision functionFi exceedsFthreshold, then the user interest
learning model examines the kind of shift and adjusts the
class selection vector accordingly.

When an upward shift for a classc is declared, it will
further check whetherc is the most probable class (i.e.,qc

currently attains the highest class selection probability). Ifc
is the most probable class, no adjustment for the class
selection vector is needed. Otherwise, it looks for the most
probable classl and distributes the sum ofqc andql equally
among these two classes as follows:

qc~t! 5 ql~t! 5 ~qc~t! 1 ql~t!!/2
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Suppose a downward shift for a classc is declared. Ifc
is not the most probable class, no adjustment is needed.
Otherwise, the user interest learning model will react as
follows: first, we look for the next best class. When the
learning model has converged to the optimal classc, the
class selection probabilities of all other classes will be close
to 0. Thus, the class selection probabilities are not a good
choice for finding the next best class. Instead of using these
probabilities, we use the estimate of the user profile vector
Û. Specifically, let the class, excludingc, with the highest
estimate of the probability of relevance bee (i.e., ûe

5 maxjÞc{ û j}). It distributes the sum ofqc andqe equally
among these two classes. It can be formally stated as fol-
lows:

qc~t! 5 qe~t! 5 ~qc~t! 1 qe~t!!/2

Analytical Study

Rate of Convergence Analysis

Under our proposed filtering framework, there exists a
stable filtering performance for a particular user profile. We
investigate convergence analysis, which is essentially a
study of how fast the system achieves the stable filtering
behavior. Consider a scenario when a single shift has oc-
curred in the underlying user profile. We assume that the
shift is always correctly detected.

Let V(t) be the average relevance for a given class
selection vector defined as:

O
i51

m

u iqi~t! (7)

Let E[V(t)] be the expectation ofV(t) andu l be the optimal
probability of relevance for the user (i.e.,u l 5 maxi(ui)). A
measure of the instantaneous rate of convergence at feed-
back cyclet is given by:

r̂~t! 5
u l 2 E@V~t 1 1!#

u l 2 E@V~t!#
(8)

r̂(t) represents how closeE[V(t 1 1)] is to E[C*] in
comparison withE[V(t)].

Because the user interest learning model is based on a
LR2I scheme, which is an absolutely expedient scheme,
E[V(t)] is a monotonically increasing function oft (i.e.,
E[V(t 1 1)] . E[V(t)]) (Narendra & Thathachar, 1989).
Therefore,r̂(t) # 1 for all t. Equation (8) can be expressed
as follows:

r̂~t! 5 1 2
E@V~t 1 1! 2 V~t!#

u l 2 E@V~t!#
(9)

E[V(t 1 1) 2 V(t)] is the expected increase in the average
relevance at the time instancet. Now, we consider a learn-
ing scheme described in Equation (2). The expected in-
crease in the average relevance is given by:

E@V~t 1 1! 2 V~t!# 5
l

2 O
i51

m O
j51

m

~u i 2 u j!
2E@qi~t!qj~t!# (10)

E[V(t)] is given by:

E@V~t!# 5 O
i51

m

u iE@qi~t!# (11)

The expressions in Equation (10) and Equation (11)
involve E[qi(t)], which cannot be computed because the
distribution ofQ(t) is unknown. Nevertheless, we can make
use of the value at timet to serve as an estimate of the
expectation value (i.e., we useqi(t) for an estimate of
E[qi(t)]). As a result,r(t) can be expressed as:

r~t! 5 1 2

l/2 O
i51

m O
j51

m

~u i 2 u j!
2qi~t!qj~t!

u l 2 O
i51

m

u iqi~t!

(12)

Equation (12) plays a central role in analyzing the rate of
convergence of the learning model incorporating the user
interest tracking scheme. As indicated in this equation, the
rate of convergence depends on both the current class se-
lection vectorQ and the underlying user profile vectorU.

Convergence Analysis Without Shift Detection

Consider the situation where the learning model has
converged to the optimal classl . We expectql to be very
close to 1, whereas all other probability of relevance are
close to 0. Now suppose there is a change in the user profile.
Specifically, the new probability of relevance ofl drops to
a rather low value. The class with the next highest proba-
bility of relevance in the old user profile becomes the new
optimal classl 9. Let U9 5 { u91, u92, . . . , u9r} be the
probability of relevance vector of the new profile. Hence,u i

5 u9i @i Þ l . Let tc be the time instance where this profile
change takes place. Using Equation (12), we can calculate
r(tc) the rate of convergence attc as follows:

r~tc! 5 1 2

l/2 O
i51

m O
j51

m

~u9i 2 u9j!
2qi~tc!qj~tc!

u9l9 2 O
i51

m

u9iqi~tc!

(13)
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Also, we calculater(`), the rate of convergence when the
learning model converges to the optimal class as follows:

r~`! 5 1 2

l O
i51

m

~u9l9 2 u9i!
2

O
i51

m

~u9l9 2 u9i!

If no user interest tracking scheme is used,r(tc) andr(`)
give the bounds of the convergence rate. To simplify the
analysis, we can develop the average rate of convergence
rnodetect using the bounds. For instance,rnodetect can be
calculated using the weighted sum like (w1r(tc)
1 w2r(`))/(w1 1 w2). Let bnodetect be the relevance
distance between the current average relevance and the
optimal one at timetc. bnodetectcan be calculated by:

bnodetect5 u9l 9 2 O
i51

m

u9iqi~tc! (14)

Let bdesiredbe the desired relevance distance that we want to
achieve. It can be shown that the timetnodetect(number of
feedback received) needed forbnodetectto decrease tobdesired

is:

tnodetect5 logSbdesired

bnodetect
D/log rnodetect (15)

Note that both the numerator and denominator in Equation
(15) are negative.

Convergence Analysis With Shift Detection

We compare the time needed if the learning model in-
corporates the user interest tracking scheme. Lettd be the
time instance (number of feedbacks received) aftertc for
which the appropriate shift is detected and declared so that
the learning model reinitializes its class selection probabil-
ity vector to Q9 5 { q91, q92, . . . , q9m}. Let bdetect be the
relevance distance between the average relevance at timetc
1 td and the optimal one.bdetectcan be calculated by:

bdetect5 u9l 9 2 O
i51

m

u9iq9i (16)

Similarly, the average rate of convergencerdetectis given
by (w1r(tc 1 td) 1 w2r(`))/(w1 1 w2). The rate of
convergence at this time instancetc 1 td is:

r~tc 1 td! 5 1 2

l/2 O
i51

m O
j51

m

~u9i 2 u9j!
2q9iq9j

u9l9 2 O
i51

m

u9iq9i

(17)

Hence, the timetdetectneeded to reach the same perfor-
mance levelbdesiredis:

tdetect5 td 1 logSbdesired

bdetect
D/log rdetect (18)

As a result, the gain in the convergence timeg can be
characterized using Equation (15) and Equation (18) as
tnodetect/tdetect. If g . 1, the learning model incorporated
with the user interest tracking scheme is superior to the one
without the tracking algorithm. Ifg , 1, the user interest
tracking algorithm penalizes the performance of the learn-
ing model.

To analyze the gaing, consider Equation (14). Because
ql is close to 1, whereas all other probabilities of relevance
are very close to 0,bnodetectis approximately equal tou9l 9
2 u9l. On the other hand, from Equation (16),bdetect is
roughly equal tou9l 9 2 0.5(u9l 1 u9l 9) 5 0.5(u9l 9 2 u9l) (due
to the reinitializing scheme discussed in the User Interest
Tracking Model section). Obviously, we havebdetect

, bnodetect. Moreover, the larger is the value ofbnodetect, the
larger the difference betweenbnodetectandbdetect. Due to the
same reason,r(tc) in Equation (13) is closer to 1 compared
with r(tc 1 td) in Equation (17). Therefore,tnodetect in
Equation (15) will be larger than the expression on the right
side of the sum in Equation (18).

The remaining component fortdetect to be analyzed in
Equation (18) istd (i.e., the time required to declare a shift
occurrence). We are interested in calculating the expected
value of td (i.e., E[ td]). Following the notation used in the
User Interest Tracking Model section, we consider the sit-
uation where a downward shift in probability of relevance
from u to b has occurred at timeh. Let 5 denote the set
containing Rn which enables the shift declaration at the
exact timetd after the shift occurrence for a classc. Pre-
cisely, the following conditions hold for5:

; Rn [ 5@ ; n0 , n; Fc
~d!~Rn0! # FthresholdandFc

~d!~Rn!

. Fthreshold#

whereRn0
denotes the partial sequence from the first feed-

back up to then0th feedback inRn. Fc
(d) is the decision

function described in Equation (7). The probability of shift
declaration occurred attd after shift occurrence is given by:

O
Rn[5

L~h, u, buRn!
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whereL is the likelihood function given in Equation (3).
Hence, the expected valueE[ td] is:

O
td51

` S td O
Rn[5

L~h, u, buRn!D (19)

From the simulation study, we found that the average
value of td lies between 4 and 9 for an abrupt shift (e.g.,u
5 0.9, b 5 0.1). It lies between 20 and 45 for a moderate
shift (e.g.,u 5 0.9, b 5 0.5). Therefore,td is negligible
when compared withtnodetect, which is in the order of
hundreds or even thousands. As a result, we expecttdetectis
much smaller thantnodetect, especially when there is a drastic
change in the optimal class in the user profile.

The effect of a wrong decision on the part of the tracking
algorithm will be to deteriorate the performance of the
scheme. For example, a shift decision when none has oc-
curred (false alarm) can unnecessarily reinitialize the learn-
ing model, and cause relearning on the latter’s part. How-
ever, with proper choices of the parameters of the tracking
algorithm (i.e.,k1 and k2 described in the Integrating the
Tracking Model section, ors0 ands1 described in the User
Interest section), the probability of false alarms and missed
detections can be made as small as desired.

Simulation Studies and Experiments

Simulation Studies

To validate our basic detection model, we have con-
ducted some simulation studies to verify the effect of the
degree of shift (e.g., abrupt shift and moderate shift) and the
cost ratio parameterk on the number of feedback received
(shift detection time)td. Because our detection model con-
siders each class independently, we used a single class in the
studies. The feedbacks were given according to the proba-
bility of relevance value of this class. The on-line shift
detection module was invoked at each iteration.

The probability of relevance for a single class at the
beginning was set to 0.9 (i.e.,u 5 0.9). At iteration 60, the
probability of relevance was switched to a new probability
of relevanceb. The time for detecting a shift was recorded.
Table 1 shows the shift detection time of each trial atk 5 5
under different degree of shift. The first row represents an
abrupt shift. The average shift detection time was 6. As we
move down the table, the degree of shift becomes moderate.

We can observe that the average shift detection time be-
comes larger if the degree of shift gets moderate.

We also varied the cost ratio parameterk. For each
combination ofb andk, we conducted 10 trials.

Figure 2 depicts the average shift detection time of
various degree of shift and cost parameterk. The initial
probability of relevance was 0.9 and the shift occurred at
time 60. The plot also demonstrates that the average shift
detection time increases as the degree of shift becomes
moderate. Moreover, for a givenb, the shift detection time
becomes longer as we increase the cost ratio parameterk.

Filtering Experiments

We have conducted a series of experiments to evaluate
our user interest tracking model and verify our analytical
study. The document collection was created using records
from the MEDLINE database. Bibliographic records, con-
taining title, author, and abstract, of 6,000 documents from
29 cell biology classes (Table 2) were used.

To evaluate our model under different user behaviors, we
conducted simulation of our filtering model on different
user profiles. Filtering was conducted for multiple sessions
both with and without the user interest tracking model.
There were 15 documents in a session and feedbacks of the
first S documents were given in each session. To evaluate
the filtering performance, we use theaverage filtering pre-
cision,AFP, which is defined as:

AFP5 O
i51

M

Ri/~M 3 S!

TABLE 1. The shift detection time of different degree of shifts,k 5 5, u 5 0.9.

Trial number

Average1 2 3 4 5 6 7 8 9 10

0.1 5 8 9 6 5 5 6 8 4 4 6.0
b 0.3 6 9 17 13 8 18 18 16 14 7 12.6

0.5 10 16 26 30 19 29 20 27 15 19 21.1

FIG. 2. The average shift detection time of various degree of shift and
cost ratio parameterk.
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whereM is the total number of sessions;Ri is the number of
relevant documents in the firstS documents within thei th
session.

The underlying user profile vector for the first user is: 0.9
0.0 0.2 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0. At the
beginning, the user is very interested in the first class (i.e.,
Cell Adhesion) and the sixth class (i.e., Complement Acti-
vation). At iteration 60, the relevance value of the first class
decreases from 0.9 to 0.1. It represents the fact that the user
loses interests in Cell Adhesion. Therefore, the only topic in
which the user remains interested is Complement Activa-
tion.

The result shows that the class selection vectorQ almost
converges to the first class, withq1 being 0.999 and all other
elements inQ being close to 0. Figure 3 depicts the root-
mean-square (r.m.s.) error of the estimated user profile
vector (i.e., the distance between the vectorsU andÛ). The
r.m.s. error became stable after around iteration 36. At
iteration 60, due to the user interest shift, the r.m.s. error

surged. With the user tracking model, the downward rele-
vance shift of the first class was detected at iteration 62.
Upon this successful shift detection, our model will revise
the class selection vectorQ so thatq1 andq6 become 0.499,
while all other elements inQ remains unchanged. The r.m.s.
error reduced drastically. On the other hand, the system
without the tracking model maintained a high r.m.s. error.
Figure 4 shows the average filtering precision of each iter-
ation. The filtering system with the user tracking model was
able to converge to the sixth class more quickly with AFP
value of 0.667 at around iteration 88. It has an average AFP
of 0.60 because the user interest shift. On the other hand, the
system without the user tracking model converged to the
sixth class slower with AFP value of 0.458 at iteration 88.
It has an average AFP of 0.33 because the user interest shift.
It demonstrates a filtering performance improvement of
over 82%.

The underlying user profile for the second user is: 0.9 0.0
0.2 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0. This profile is
similar to the initial profile of the first user except the degree
of interest for the sixth class.

At the beginning, the user is very interested in the first
class (i.e., Cell Adhesion) and only is somewhat interested
in the sixth class (i.e., Complement Activation). At iteration
50, the user switches the interest from the first class to the
sixth class. In particular, the relevance value for the first
class decreases from 0.9 to 0.1, and the relevance value for
the sixth class increases from 0.4 to 1.0. The result shows
that the class selection vectorQ almost converges to the first
class, withq1 being 0.996 and all other elements inQ being
close to 0. Figure 5 depicts the root-mean-square (r.m.s.)
error of the estimated user profile vector. The r.m.s. error
became stable after around iteration 35. At iteration 50, due
to the user interest shift, the r.m.s. error surged. With the
user tracking model, the downward relevance shift of the
first class was detected at iteration 55. Upon this detection,
the class selection vectorQ was updated. The r.m.s. error
reduced drastically. On the other hand, the system without

TABLE 2. The classes used in the experiments.

Class label Class name Class label Class name

1 Cell adhesion 16 Nerve
2 Antibody 17 Healing
3 Endocytosis 18 Phagocyte
4 Immunocompromised 19 Aggregation
5 Immune tolerance 20 Communication
6 Complement activation 21 Cytotoxicity immunologic
7 Evolution 22 Immune tolerance
8 Autoimmunity 23 Lymphocyte
9 Digest 24 Transport

10 Cytotoxicity 25 Cell survival
11 Bone 26 Clone
12 Cell death 27 Radiation
13 Chemotaxis 28 Formation
14 Cellular immunity 29 Cell movement
15 Regeneration

FIG. 3. The root-mean-square error of the estimated user profile vector
for user 1.

FIG. 4. The average filtering relevance of the experiment for user 1.
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the tracking model maintained a high r.m.s. error. Figure 6
shows the average filtering precision of each iteration. The
filtering system with the user tracking model was able to
converge to the sixth class more quickly with AFP value of
0.667 at iteration 71. It has an average AFP of 0.58, because
the user interest shift. On the other hand, the system without
the user tracking model converged to the sixth class slower
with AFP value of 0.458 at iteration 71. It has an average
AFP of 0.37, because the user interest shift. It demonstrates
a filtering performance improvement of roughly 57%.

The underlying user profile for the third user is: 0.45 0.0
0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0. At the beginning,
the user is somewhat interested in the first class (i.e., Cell
Adhesion) and has little interest in the sixth class (i.e.,
Complement Activation). At iteration 120, the user becomes
interested in the sixth class in which he/she was not inter-
ested. In particular, the relevance value for the sixth class
increases from 0.05 to 1.0. The result shows that the class
selection vectorQ almost converges to the first class, with
q1 being almost 1.0, and all other elements inQ being close
to 0. Figure 7 depicts the root mean square (r.m.s.) error of
the estimated user profile vector. The r.m.s. error became
stable after around iteration 100. At iteration 120, due to the
user interest shift, the r.m.s. error surged. With the user
tracking model, the upward relevance shift of the sixth class
was detected at iteration 125. Upon this detection, the class
selection vectorQ was updated. The r.m.s. error reduced
drastically. On the other hand, the system without the track-
ing model maintained a high r.m.s. error. Figure 8 shows the
average filtering precision of each iteration. The filtering
system with the user tracking model was able to converge to
the sixth class more quickly with AFP value of 0.833 at
iteration 160. It has an average AFP of 0.61 since the user
interest shift. On the other hand, the system without the user
tracking model converged to the sixth class slower with
AFP value of 0.542 at iteration 160. It has an average AFP

of 0.49, because the user interest shifts. It demonstrates a
filtering performance improvement of roughly 25%.

Conclusions

We address the issue of tracking user interest profile by
developing a shift detection model based on a Bayesian
framework. Bayesian modeling provides a rigorous means
to achieve the objective. The detection model is integrated
into a text document filtering system, which employs a
reinforcement learning for automatic user profile acquisi-
tion. An analytical study on the rate of convergence is
presented to gain insight on the performance of our pro-
posed Bayesian shift detection model. We have conducted
simulation studies to investigate the influence of different
patterns of interest shift on system performance. The results
demonstrate that the user interest shift modeling is able to
track the changes of user interests on-line. This capability

FIG. 7. The root-mean-square error of the estimated user profile vector
for user 3.

FIG. 5. The root-mean-square error of the estimated user profile vector
for user 2.

FIG. 6. The average relevance of the experiment for user 2.
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can improve the filtering performance by effectively main-
taining the fidelity of the user profile.

As part of future extension to the system and further
analysis of shift detection, we wish to relax the assumption
that the classes remain fixed over the lifetime of the system.
A possible approach would be to identify classes for which
the relevance feedback is almost stochastic, and split them
into classes with narrower scope until feedback stabilizes.
Additionally, classes for which feedback remains negative
over a long period of time may eventually be dropped. To
accommodate class space contraction or expansion, the in-
terest values would need to be redistributed accordingly,
and the algorithms for reinforcement learning and shift
detection would have to be appropriately modified to handle
such revisions of the interest values.

Finally, we intend to enhance the current approach by
considering different types of relationships among concepts.
The relationships such as hierarchy and subsumption among
concepts are useful in learning a more accurate user profile.
Another future direction is to investigate the application of
our Bayesian tracking model with a heterogeneous and large
group of users. This research could reveal among other
things how backgrounds of users influence feedback pat-
terns, and how that may in turn influence shift detection.
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Appendix

To computeS(u)(Rn), we first calculate the posterior
probability of no upward shift has occurred givenRn (i.e.,
P((h $ n)uRn) using Bayes theorem as follows:

FS O
j5n

`

ps~j !D E
0

1 E
u

1

L~n, u, buRn!pd~u, b! db ddG /1 (20)

where1 is a normalization factor given by:

1 5 O
j50

`

@ps~j ! E
0

1 E
u

1

L~j , u, buRn!pd~u, b! db du# (21)

As a result,S(u)(Rn) can be readily obtained from Equation
(20) as follows:

1 2 FS O
j5n

`

ps~j !D E
0

1 E
u

1

L~n, u, buRn!pd~u, b! db duG /1

(22)

To calculate the posterior probability of a downward
shift S(d)(Rn), we follow a similar technique and modify
Equation (20) and Equation (21) to perform the integration
over the range 0, b # u , 1 instead of using the range 0
, u # b , 1. Therefore,S(d)(Rn) can be computed as
follows:

1 2 FS O
j5n

`

ps~j !D E
0

1 E
b

1

L~n, u, buRn!pd~u, b! du dbG /1

(23)

where1 is given by:

1 5 O
j50

`

@ps~j ! E
0

1 E
b

1

L~j , u, buRn!pd~u, b! du db# (24)

To evaluate the integration in the above formulae, we
make use of the following relationship regarding the beta
function:

E
0

1 E
a1

1

a2
t1~1 2 a2!

t2 da2 da1 5 E
0

1

a2
t111~1 2 a2!

t2 da2

5 Beta~t1 1 2, t2 1 1!

FIG. 8. The average relevance of the experiment for user 3.
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where Beta(z , z ) denotes the beta function. As a result, both
S(u)(Rn) andS(d)(Rn) can be obtained by a sequence of beta
function evaluations.
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