
Cluster Computing 5, 377–388, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Homogeneous Agent-Based Distributed Information Filtering

RAJEEV R. RAJE, MINGYONG QIAO, SNEHASIS MUKHOPADHYAY, MATHEW PALAKAL and
SHENGQUAN PENG

Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan Street, SL 280, Indianapolis,
IN 46202, USA

JAVED MOSTAFA
School of Informatics, Indiana University, 1320 East tenth street, Room 025, Bloomington, IN 47405, USA

Abstract. Recent advances in processor, networking and software technologies have made distributed computing a reality in today’s world.
Distributed systems offer many advantages, ranging from a higher performance to the effective utilization of physically dispersed resources.
Many diverse application domains can benefit by exploiting principles of distributed computing. Information filtering is one such application
domain. In this article, we present a design of a homogeneous distributed multi-agent information filtering system, called D-SIFTER.
D-SIFTER is based on the language-dependent model of Java RMI. The detailed design process and various experiments carried out using
D-SIFTER are also described. The results indicate that the distributed inter-agent collaboration improves the overall filtering performance.

Keywords: multi-agent systems, information filtering, distributed-object computing, representation and clustering, Java-RMI

1. Introduction

In recent past, with the proliferation of personal comput-
ers, individual workstations and the advent of high-speed
networks; distributed or clustered computing has become a
prominent paradigm. There are many reasons for the pop-
ularity of distributed computing, e.g., speedup, inherent dis-
tributed properties of the application, a presence of special-
ized functional units and geographically dispersed data re-
sources. The development of distributed software systems
involves handling many challenging issues, such as heteroge-
neous computing resources, multiple languages, partial fail-
ures, communication, etc. Some of these issues can ef-
fectively be handled by the use of a platform independent
language like Java and its distributed computing feature –
Remote Method Invocation (RMI) [19]. In this paper, we
describe Distributed Smart Information Filtering System for
Electronic Resources (D-SIFTER) – a homogeneous agent-
based distributed information filtering system – that is de-
signed using the distributed-object model of Java-RMI.

The rest of this paper is organized as follows. We start with
a brief introduction of the philosophy of distributed informa-
tion filtering. It is followed by a discussion about related and
our past work. Then we describe the detailed design and im-
plementation of D-SIFTER. Finally, we present a few experi-
ments, conducted with D-SIFTER, along with the results and
conclusions.

2. Related and previous work

2.1. Information filtering and retrieval

In an interconnected world, a tremendous amount of elec-
tronic information is created and delivered each day. The

flooding of the information over the network has forced users
to locate tools that will assist in coping with this informa-
tion overload. Information Filtering (IF) and Information Re-
trieval (IR) systems are examples of such tools.

IF is a way to classify, sort and present documents accord-
ing to an user’s interests. IF systems are commonly person-
alized to support long-term information needs of a particular
user or a group of users with similar needs. They accomplish
the goal of personalization by directly or indirectly acquiring
information from the user. In IF systems, these long-term in-
formation needs are represented as user interest profiles [5],
which are subsequently used for matching or ranking pur-
poses. The interest profiles are maintained beyond a single
session and are modified based on users’ feedback. As user
profiles are indications of users’ behavior, it is necessary to
protect the privacy of these profiles. In this information age,
the importance of IF systems is paramount. They aid in re-
ducing the information burden of users and at the same time
make an attempt to adapt to the changing user interests.

Filtering contexts typically involve a dynamic stream of in-
formation, as opposed to static data bases used in traditional
IR systems. Due to the dynamic nature of the stream, time-
liness of information assumes a added significance in the fil-
tering context. The amount of data involved in filtering envi-
ronments is usually very large and unstructured. IF involves
repeated interactions over multiple sessions with users hav-
ing long term goals. This is in contrast to IR systems, where
the user typically has a short term information need that is
satisfied within a single session.

Filtering systems are more likely to be used by a wider
community of users than IR systems. The users of IF sys-
tems may not be highly motivated in their information seeking
process and may not have well defined interests. Therefore, IF
systems need to be more user-friendly than IR systems, which



378 RAJE ET AL.

have been mostly aimed at the highly motivated information
seeker with very specific information needs.

2.2. IR systems

IR is a well established field of information science that ad-
dresses issues of retrieval from a large collection of docu-
ments in response to user queries. Wide Area Information
Servers (WAIS) [3] is a networked-based document indexing
and retrieval system for textual data. In WAIS, servers main-
tain inverted indices of keywords that are used for efficient re-
trieval of documents. WAIS allows users to provide relevance
feedback to further specialize an initial query. Gopher [6] is
primarily a tool for browsing through hierarchically organized
documents, but it also allows to search for information using
full-text indices. In the World Wide Web (WWW) [1] the in-
formation is organized using the hypertext paradigm where
users can explore information by selecting hypertext links to
other information. Documents also contain indices which the
user can search for.

2.3. Agent-based information services and IF systems

Amalthea is a multi-agent evolutionary system based on ge-
netic algorithms applied to IR [8]. In this system, agents
perform tasks such as: learning user interests, discovery of
relevant information, information filtering, and monitoring of
periodical content changes of specific sources. There are two
types of agents in the system, information filtering agents and
information discovery agents. These two agents compete and
cooperate to serve the user.

Stanford Information Filtering Tool (SIFT) maintains user
profiles, which are composed of keyword inputs by the user,
compares the incoming news against the profiles and email
the relevant news to the user [21].

Pefna [4] system filters newsgroup articles using represen-
tative articles for different categories. The user provides a
list of ordered categories and representative article for each
category. The articles are rated by assigning a cosine distance
value and comparing them against the sample article for every
category. Articles below a certain threshold are then elimi-
nated.

D-SIFTER has some similarities and a few significant dif-
ferences with the above mentioned systems. These similari-
ties and differences will become more apparent as we discuss
the philosophy and design of D-SIFTER.

3. Previous work

3.1. SIFTER

D-SIFTER has its roots in SIFTER, which is a single agent
and stand-alone information filtering system, developed at
IUPUI (Indiana University Purdue University) [7]. SIFTER
consists of four modules: a representer, a classifier, a user
profiler, and a presenter. The representation module is re-
sponsible for converting a document into a numeric structure

that can be manipulated by the classification module. The
classification module consists of two important stages: the
cluster learning stage and the vector classification stage. Dur-
ing the first stage, clusters are generated from an initial set
of sample documents. Each cluster is then represented by its
centroid. Each cluster and its corresponding centroid signifies
a different document category. It is then the task of the clas-
sification module to classify each incoming document into a
specific cluster. The purpose of the user profile module is to
keep the user’s profile, the mechanism by which the system
views the human user, up-to-date. The presenter module al-
lows interactions with the user. The combination of these four
components constitute a filter or an agent, which performs the
task of rank-ordering and presenting the incoming documents
based on the user’s preferences.

In SIFTER, a filter (or an agent – in this article, the terms
agent and a filter are used interchangeably) contains a knowl-
edge base, called thesaurus, that consists of keywords and
terms culled from an authoritative source of a specific do-
main. The representer converts the incoming document into
a vector based upon the thesaurus. As stated above, the clas-
sifier uses this vector to classify the document to a specific
cluster. Due to the discovery of newer keywords as well as
computational complexity resulting from a large thesaurus, it
is possible that an agent’s thesaurus cannot contain all possi-
ble keywords/terms. Such a limitation of the knowledge base
results in many incoming documents not being classified and
presented to the user, thereby, resulting in a poor information
filtering performance.

3.2. Rationale for using distributed information filtering

The above mentioned and other inherent limitations of SIF-
TER can be elegantly handled by the use of distributed in-
formation filtering principles involving collaboration between
multiple agents equipped with separate thesauri. Below, we
present a brief discussion about the rationale for D-SIFTER.
A more detailed elaboration is found in [11].

SIFTER suffers from the inadequacy of its thesaurus. Two
alternatives exist to overcome this drawback. The first one
aims at making the thesaurus extra large; while the second al-
ternative uses the principles of distributed systems by allow-
ing multiple agents to collaborate with each other over the
network. Each agent in the multi-agent system has a small
thesaurus that is specific to one domain (i.e., Computer Sci-
ence, Biomedical Science, etc.), or catering to an user’s in-
terests (i.e., books, music, sports). In case the thesaurus of
an agent turns out to be inadequate, that agent can seek assis-
tance from other agents.

The first approach has distinct disadvantages such as, time
complexity, difficulty in dealing with independent discov-
ery of new terms, poor scalability, fault tolerance, adaptabil-
ity, and flexibility. The second approach easily overcomes
these drawbacks. Multiple agents cooperating with each other
speed up the computation, complement each other’s capabili-
ties, share each other’s knowledge, and improve the efficiency
and quality of information filtering.



HOMOGENEOUS AGENT-BASED DISTRIBUTED INFORMATION FILTERING 379

3.2.1. Speedup and time complexity
As the number of terms in a thesaurus increases, more cen-
troids are generated during the cluster learning stage. We
performed various experiments [11] with different thesaurus
sizes (ranging from 10 to 80) on 5000 documents. As ex-
pected, the number of centroids generated increased almost
linearly with the size of thesaurus. During the process of clas-
sification the distances between the incoming document vec-
tor and all centroids are computed and the the incoming docu-
ment is assigned to the centroid having the minimum distance.
Thus, it is obvious that larger the number of centroids, more
time would be needed by the classification process; thereby,
increasing the overall filtering time. Hence, a very large cen-
tralized thesaurus would certainly suffer from poor response
time. In contrast, a multi-agent filtering system will consist of
many agents, each having a small thesaurus, thereby, reduc-
ing the classification time and improving the overall response
time. This improvement may be possible in spite of the fact
that the multi-agent approach has to deal with the network
transmission overhead.

3.2.2. Fault tolerance
In a centralized system, everything including thesaurus, cen-
troids, classified documents, user profiles, are all located on
one machine. If that machine fails due to any reason then
users cannot get information filtering services. In a distributed
information filtering environment, if one machine fails, users
can get a reduced performance with a graceful degradation by
employing other agents executing on different machines.

3.2.3. Flexibility and adaptability
In a centralized system there is only one thesaurus. The cen-
troids and the user profiles are specific to that thesaurus. As
new document streams may arrive and/or user’s interests may
change, the thesaurus may not be good enough to represent
the document contents or new interest domains. Hence, there
will be a need for updating the thesaurus. Our experiments
with expert users from biomedical domains have indicated
the need for automatic discovery of new terms and a constant
upgrading of the thesaurus. If the thesaurus is updated, the
centroids and user profiles need to be updated also. This obvi-
ously is not an easy task, especially in a centralized scenario.
In the centralized model, one way is to handle the updating
task is to re-learn the clusters and user profiles, which is a
time consuming process. In a distributed IF system, this prob-
lem can be solved easily. New agents with new thesauri and
centroids can be added to the system without changing the ex-
isting agents. User can always change interests and get docu-
ments classified from other agents. A distributed information
filtering system can also have multiple agents, each serving a
different domain and/or a user community. Thus, a distributed
approach to information filtering exhibits openness.

3.2.4. Resource sharing, privacy and economics
In real world, users and data resources are geographically dis-
persed. Users may need to get information from different

databases and databases may want to serve different users.
An user wants to quickly get the information that he/she is
interested in. Since documents are located in different places
and stored in different formats, there is not an easy way to
put all information onto one machine due to copy rights, pri-
vacy, etc. Companies and organizations may want to earn
money by giving the information which users want. Users
may only want to buy the information that they are interested
in. In such a case, a distributed information filtering system
is obviously appropriate, as: a) there could be local filtering
agents for each data resource, b) different agents may col-
laborate through adequate economical models and policies,
and c) an user’s agent can get remote documents by pay-
ing appropriate compensations. In addition, users may not
want to put their profiles on this centralized machine, as it
would compromise their privacy. In turn, they would pre-
fer maintaining their profiles on their local machines. Such a
distribution of profiles is clearly infeasible in the centralized
model.

D-SIFTER precisely addresses these limitation of the cen-
tralized approach by exploiting the interconnected nature of a
net-centric environment. D-SIFTER adds a distributed flavor
to SIFTER by creating a multi-agent environment, in which
an agent, in addition to serving its user, aids other agents or
asks for assistance from others. D-SIFTER is a homogeneous
IF system, as all agents in D-SIFTER are identical except for
their thesauri. Each agent has a small thesaurus, which may
or may not have overlap with the thesauri of other agents.
Whenever an agent cannot classify an incoming document,
due to its limited thesaurus, it seeks assistance from other
agents. Depending upon the collaboration model used (details
are mentioned in section 4), an agent may receive assistance
from one or many other agents. Such a inter-agent collabora-
tion not only increases the classification but also improves the
overall filtering performance.

4. D-SIFTER

We have designed D-SIFTER using the distributed-object
model of Java-RMI. Hence, before we discuss D-SIFTER, in
detail, below a brief review of Java-RMI is provided. For
more details the user is referred to [10,12,19].

4.1. Java RMI

The basic idea behind Java RMI is the concept of a re-
mote object. A remote object supports invocations of its
remote methods by other objects regardless of their address
spaces.

When a client object communicates with a remote server
object, which resides in a separate Virtual Machine, it (client)
must interact with the remote interface of the server. The
remote interface defines the methods of the server that are
visible to nonlocal objects. The client receives a refer-
ence to the server through a naming service, called Reg-
istry.



380 RAJE ET AL.

Figure 1. Distributed information classifier.

When a client invokes a method on a remote interface,
a proxy object, called the stub, receives the method invoca-
tion. The stub then forwards the call across the network,
where a skeleton receives it. The skeleton will then invoke
the method on the server object. When the invocation is done,
any return arguments are forwarded back across the network
to client object through the same mechanism.

We chose Java RMI as the preferred model of the imple-
mentation of D-SIFTER due to its many attractive features.
The homogeneous nature of the agents in D-SIFTER mapped
well with the language-centric model of RMI. The simplicity
of Java RMI was another reason for its selection. Other inher-
ent features of Java, such as portability, built-in security and
the support for the applets were additional reasons for making
RMI as the preferred model for the design of D-SIFTER.

4.2. Distributed information classifier

The distributed information classifier (DIC) [14] is the first
part of D-SIFTER. It focuses only on inter-agent collabora-
tion for the purpose of document classification. In the dis-
tributed classifier, we have investigated many paradigms for
inter-agent collaborations. In addition to the representer, clas-
sifier and the user interface modules, which are identical to
the ones in SIFTER, each agent is equipped with a collabora-
tion module. This module handles the inter-agent communi-
cations.

Collaborative Paradigms. Figure 1 shows the architecture
of DIC. As mentioned earlier, in DIC all agents are identical,
except for the thesaurus. The communication among different
agents takes place in an indirect manner through a common
server. The server architecture is fairly simple – it has a wait-
ing queue for storing the documents that need assistance from

other agents. Each agent has its own result queue for storing
the results of the classification. When an agent fails to clas-
sify a document, it puts that document into the waiting queue
on the server. The agent periodically checks its result queue
to see if there are any classification results, made available by
other helping agents, which need to be retrieved.

In DIC, we have implemented three types of collaborative
schemes: single-opinion, multiple-opinion and combined-
opinion.

• Single-opinion: In this model, only one remote agent is al-
lowed to assist another agent. The strength of this model is
simplicity, but it also results in the drawback of decreasing
the possibility of all documents being classified.

• Multiple-opinion: In this model, more than one remote
agent is allowed to assist another agent. It aims to compen-
sate the drawbacks of the single-opinion model. It repre-
sents the real world by allowing different agents to partici-
pate in the collaboration. It leads to a better classification.
The drawback of this model is the difficulty in managing
multiple remote agents. The critical issues include wait-
ing for all agents to complete their classification, waiting
for all agents to produce a bid (in a market driven system),
and an added overhead of determining the most appropri-
ate remote classification of a document.

• Combined-opinion: This model aims at overcoming the
drawback of the single-opinion model, and at the same
time, simplify the complexity of the multiple-opinion
model. It allows all remote agents a shot at classifying a
document, that cannot be handled by the local agent, but in
a sequential order. Thus, if an agent, ai , cannot classify a
document, dik , then all other agents, aj , i �= j , attempt to
classify dik in a sequential manner. As soon as any agent,



HOMOGENEOUS AGENT-BASED DISTRIBUTED INFORMATION FILTERING 381

Figure 2. Logical view of an agent.

ak, is able to classify dik, the remaining agents are denied
the chance of classifying dik . This model guarantees that
a document will be classified if there is at least one agent
which has an adequate thesaurus to classify that document.

Below, we present the design of D-SIFTER that contains,
in addition to DIC, the distributed profile module. Thus, an
agent in D-SIFTER contains a representer, a classifier, a col-
laborator, a profiler and a presenter. Again, all agents are
identical in structure, except for their thesauri.

5. D-SIFTER design with the distributed profile module

5.1. Architecture

In D-SIFTER, the design of an agent is divided into three
packages: SIFTER package, communication package, and
user service package. SIFTER package itself is a complete
and stand-alone information filtering agent. Communication
package is responsible for collaboration with other agents.
User service package consists of an applet and several other
modules, which provide the user with an interface for interac-
tions with the system. In addition to the agents, D-SIFTER
also contains a module, SiftServer, which is the common
server. This common server allows inter-agent communica-
tion in an indirect manner. There are two reasons for not
incorporating a direct multicast in D-SIFTER. The first rea-
son is simplicity of the design. The second reason is that in a
market-based collaboration, a presence of a central authority
helps in the regulation of the system dynamics. The logical
view of the D-SIFTER, using the UML notations, is shown in
figures 2 and 3.

5.1.1. SIFTER package
This package includes the Representation module, Thesaurus
module, Classifier module, User Profile module, InputBox
module and OutputBox module.

Figure 3. Logical view of SiftServer.

Representation module. This module is responsible for con-
verting a document into a numeric structure that can be ma-
nipulated by the classification module. To accomplish this
SIFTER uses the common vector-space model [18] for the
representation and the popular tf-idf technique to establish a
degree of importance for each term in that document. This
module creates a table for each document that contains the
frequencies of thesaurus terms in that document. Then, the
following equation is used to calculate the elements of the
vector: Wik = Tik · log(N/nk), where Tik is the number of
occurrences of term Tk in the current document, i, log(N/nk)

is the inverse document frequency of term Tk in the entire
document set, N is the total number of documents set, and nk

is the number of documents in the set that contain the given
term Tk .

Thesaurus module. This module represents the knowledge
base for a particular domain. If we want to change the do-
main of the documents or expand the knowledge base of the
agent, we simply change the contents of this module. Such a
design provides the necessary flexibility to adapt D-SIFTER
to multiple domains, with the minimum amount of modifica-
tion.

Classifier module. This module consists of two important
stages: the cluster learning stage and the vector classification
stage. During the first stage, clusters are generated from an
initial set of sample documents vectors. Each cluster is then
represented by its centroid. Each cluster and corresponding
centroid signify a different document category. The simple



382 RAJE ET AL.

Maximum-Distance algorithm [20] is used to determine the
centroids over the document vector space. It is then the task of
the classifier module to classify each document into a specific
cluster. We used the distance between the documents and the
centroids to determine which cluster the document belongs
to. The cosine similarity measure [17] is used to compute this
distance.

User Profile module. This module maintains the user’s pro-
file. The function of the user profile is to dynamically main-
tain a record of the user’s preferred document classes through
the feedbacks, and to prioritize the incoming documents. The
algorithm used to learn the user model is based on a rein-
forcement learning algorithm from the area of Learning Au-
tomata [7,9] in AI and Mathematical Psychology communi-
ties.

InputBox module. This module provides a wrapper to the
incoming the documents, so that all documents will have an
unified form, irrespective of their origin – local or remote.
The advantage of a wrapper is that the SIFTER package does
not need know anything about the external environments.

OutputBox module. This module is used to manage the clas-
sification results. The advantage of having a module to man-
age the results is that the results can be reused. Thus, we can
always have a thread to classify the documents if there is a
document in the InputBox.

5.1.2. Communication package
The communication package consists of two modules: a Col-
laboration module, which is responsible for communicating
with other agents in the system and a Recorder module, which
is responsible for implementing the distributed user profile.

Collaboration module. This module, which is a client of the
SiftServer, is used to expand the single agent SIFTER to a
multiple agent system. When there is an unclassified docu-
ment, the agent will sent that document to the SiftServer via
the Collaboration module. The agent will also check if there
is a result that needs to be brought back from the SiftServer.
Currently, the communication is implemented in Java RMI.
If we want to change the implementation to another mecha-
nism, we can simply change this module and that change will
not effect other parts of the system.

Recorder. This module is used to implement the distributed
user profile. As stated earlier, each incoming document is as-
signed to a cluster, by the classifier. All the clusters (which
are created off-line using a sample document set) are identi-
fied by unique numbers. Each agent, at any time, keeps the
track of total number of classes known to itself. This total
number consists of the number of the local classes and the
number of remote classes created as a result of the inter-agent
collaboration.

The function of the recorder module is to dynamically
maintain a map from local class numbers to the unified class
identifiers. At the beginning, the map has only information

about the local classes. When an agent gets a result back
from a remote agent, as a result of a collaboration, it will
check the remote agent identifier and the class number, as in-
dicated by the remote agent. If the combination of the remote
agent id and the class number is not present in the local map,
the local agent increases the total class number by one and
adds a new entry into its map. This entry is a tuple of the
form <agent – id, classno>. Eventually, the map becomes
stable and static, and no new entries are added into this map.
When another new agent enters in the system, or some agents
expand their knowledge bases, the map is again updated. If
all of the agents are allowed to help, the map will consist of
entries corresponding to all possible classes in the entire dis-
tributed system. Thus, if there are N agents in the system and
if each agent, Ai (1 � i � N), has ci local classes then in
the case of an agent receiving assistance from all others in the
system, the maximum possible entries in the local maps will
be

∑N
i=1 ci . If only a part of the agents are allowed to help,

then the map will contain a subset of total number of classes
possible in the system.

In D-SIFTER, we implemented the map as a hash table.
Figure 4 shows the sequence diagram used in establishing the
map for each agent. The basic algorithm followed by each
agent is:

1. If a document cannot be classified then:

(a) Put the document into the waiting queue of the Sift-
Server by invoking storeDoc(DocRequest) function of
the SiftServer. This invocation is a remote call using
RMI semantics. The Collaboration module is respon-
sible for storing the documents on the server.

(b) Periodically, check if one (or more) of your previously
submitted documents have been classified by a remote
agent and the result is available on the server:

(i) if such a result is available, then retrieve that re-
sult by invoking getResult() remote function of
the SiftServer;

(ii) place the result into its own OutputBox;

(iii) check the tuple <agent – id, classno> of the re-
sult fetched against entries in the class map;

(iv) if the new tuple is not present in the class map
then add the entry into the class map.

2. Repeat the process for all other documents, which cannot
be classified locally.

Figure 5 shows the sequence diagram of updating user pro-
file. When an user logs into the system, the User Service mod-
ule will initialize an user profile object on behalf of the user.
The user profile will check with the Recorder module and ob-
tain the current total class number. If the total class number
has increased, the user profile is expanded to this new size
and new classes, which have been obtained as a result of re-
mote collaborations, are incorporated. The detailed algorithm
of expanding the user profile is presented in [16].



HOMOGENEOUS AGENT-BASED DISTRIBUTED INFORMATION FILTERING 383

Figure 4. Sequence diagram for managing the Recorder table.

Figure 5. Sequence diagram for updating the User profile.

The user interface is implemented as a Java applet. In fact,
this applet is a client of the D-SIFTER system. Whenever an
user logs into the system, the system checks the user’s ID and
password. If it is a valid user, the main user interface pops
up, from which the user can interact with the D-SIFTER. Af-
ter the initial session, each further interaction of the user with
D-SIFTER starts with an automatic presentation of the rank-
ordered documents, available so far, to the user. There are
many other menus available as a part of the user interface.
The user can initialize the profile when he first logs into the
system or when the user wants or change his interests dra-
matically. This avoids the extra effort and the overhead of
establishing the profile from scratch. The user can also give
the feedback to each document, so that the system can capture
users’ interests accurately. The system also provides a profile
converge graph to help the user to determine if the system has
totally learned the user’s profile. Figure 6 shows the interface
which displays the rank ordered titles of the documents and
the associated menus. Each page displays 20 documents. The
user can read more titles by pressing the more button. Fig-

ure 7 shows the interface which displays the entire text of a
specific document. The user can provide a relevance feed-
back factor, from 0 to 1, for each document or simply close
this window.

5.1.3. SiftServer
The communication among different agents takes place in an
indirect manner through the common server. The current ar-
chitecture of the server is fairly straightforward. It has a wait-
ing queue for storing the incoming documents needing remote
assistance and each agent has its own result queue for storing
the results of the classification. The basic idea is that when an
agent fails classifying a document, it will put this document
into the waiting queue on the server. The agent will also peri-
odically check its result queue to see if there are classification
results to be brought back. This module is implemented as a
Java RMI object, which has a published remote interface, so
the agents can invoke remote functions on it and achieve the
necessary communication with it. In RMI, a remote object is
identified by a name and an associated URL-like id. The re-



384 RAJE ET AL.

mote object registers itself with the Registry by entering the
URL-format id and a name. The agents, before invoking a
remote function on the SiftServer, query the registry by pro-
viding the name (a string) of the server and in return, obtain
the URL-format id of the SiftServer. Once this id is obtained,
all remote calls are initiated through this id.

5.2. Multithread synchronization

D-SIFTER provides an ideal environment for incorporating
multiple threads. Each user has different threads to handle
the process of initializing the profile, retrieving and sorting

the documents and collaborating with other agents. These
threads must be synchronized very carefully as to avoid the
race conditions and deadlocks. Also, the OutputBox and the
SiftServer need a careful attention, as there are many threads
accessing these objects at the same time. The SiftServer is
designed as a monitor, in which all its methods are synchro-
nized. Thus, during a concurrent access, only one thread will
have the access to SiftServer. In a distributed system, there is
a high probability of a failure. Each remote method of Sift-
Server throws a RemoteException, thereby, providing an
exception handling capability.

Figure 6. GUI of D-SIFTER: the interface which displays the rank ordered titles of the documents and the associated menus.

Figure 7. GUI of D-SIFTER: the interface which displays the entire text of a specific document.



HOMOGENEOUS AGENT-BASED DISTRIBUTED INFORMATION FILTERING 385

6. Experiments and results

Although, we have performed many experiments with
D-SIFTER, here, we present a few sample ones. More de-
tails are presented in [16].

6.1. Collaborative classification

We investigated the collaborative classification using combin-
ed-opinion model. The total number of incoming documents
used for the experiment was 500. Initially only one agent
(Agent2) was allowed to classify the incoming documents
without any collaboration. It was able to classify 162 doc-
uments. Thus, its success ratio was 32.4%. Afterwards, this
agent was assisted by other two agents each having a different
thesaurus. The classification process using the same 500 doc-
uments was again carried out. As shown in table 1, Agent2

Table 1
Number of successful classifications.

System Agent1 Agent2 Agent3 Total Success

Single-agent X 162 X 162 32.4
Multiple-agent 176 162 135 473 94.6

with the collaboration was able to classify 473 documents,
which indicates the success ratio of 94.6%, which is a signif-
icant improvement over the stand-alone scenario.

6.2. Performance of D-SIFTER

Next we present the results of one experiment which indicates
the improvement, as a result of collaboration, in the overall
filtering performance. As running filtering experiments with
the real users are costly, due to the human effort and time
involved, in this test, we used a simulated user instead of a
real user. In our previous work [7], we have proved that a
strong correlation exists between the real and simulated users.
Hence, although this experiment used a simulated user, it
closely depicts the real user scenario. We created a simulated
user, who was interested in the documents belonging to four
different classes. One class was a local class and other three
classes were remote classes. Relevance factors for these four
classes were set to 1.0, and for others set to 0. We used two
popular parameters, normalized precision and normalized re-
call [7], to evaluate the performance of D-SIFTER. Figures 8
and 9 indicate the results of this experiment. As seen from

Figure 8. Comparison of the performance of Single and Multi agent.

Figure 9. Comparison of the performance of Single and Multi agent.



386 RAJE ET AL.

them, D-SIFTER performed much better than the single agent
scenario.

6.3. Scalability of D-SIFTER

In this experiment, we classified 5000 documents with differ-
ent number of agents, ranging from 3 to 18. This experiment
was performed to study the scalability of D-SIFTER and RMI
with the increase in the number of agents. The time required
to classify 5000 documents was observed. In this experiment,
one agent was classifying 5000 documents and others were
providing the remote assistance. The server was deployed
on a Sun Ultra 5 machine and all agents ran on another Sun
Ultra 5 machine. The result of this experiment is shown in
table 2. As seen from the table 2, as the number of agents in-
creases the classification time also increases in a polynomial
manner. Two prominent factors contribute to this increase: a)
these experiments employ the combined-opinion model, and
b) the inherent slowness of Java RMI. Since all agents were
located on one machine, they competed for resources, which
resulted in an increase in the overall classification time. Even-
tually, when number of agents reached 18, the machine ran
out of memory.

Table 3 shows the results of another experiment, almost
identical to the previous one, except that the agents are de-
ployed on different machines. This test was also performed
using Sun Ultra 5 machines. It is no surprise that in the
most of the cases the classification time required are less than
the ones in the previous experiment (using a single machine
to deploy all agents (using a single machine to deploy all
agents)).

It should be noted that, like the previous experiment, the
classification time in this experiment increases as the num-
ber of agents increases. This may seem surprising, espe-
cially when the agents are deployed on different machines,
i.e., the addition of more computing resources has an adverse
effect on the classification time. However, a closer look indi-

Table 2
Classification time for agents located on one machine.

No. of agents 3 6 9 12 15 18

Time (sec) 1525 3023 7611 17090 110607 Out of memory

Table 3
Classification time for agents located on different machines.

No. of agents 3 6 9 12 15 18 21 24 27 30

Time (sec) 1268 2039 5618 6751 8860 10757 13231 15330 17243 19702

cates that this is as expected, since the D-SIFTER prototype
used for all these experiments employs the combined-opinion
model of collaboration. As stated earlier, in this model of
collaboration, all agents attempt to classify a document in a
sequential order. Hence, when these agents are deployed on
different machines, classification attempts by all agents trans-
late into those many remote calls one after another. In the
worst scenario, for each document needing a remote classifi-
cation, (n − 1) remote calls will be needed, where there are
n agents in the system. Each remote call is expensive and
hence, it is obvious that for a fixed number of documents, the
increase in the number of agents results in a larger classifi-
cation time. Although, the classification time does increase
with the addition of more agents, the real benefit is the bet-
ter success in classifying incoming documents – which is an
enhances the quality of the filtering.

Table 4 indicates the results of yet another experiment,
in which all the agents are made to classify incoming docu-
ments. We increased the number of agents in the range from 3
to 30, and the number of documents from 2000 to 5000. Here,
all agents participated in the remote document classification
in addition to performing their own local classification. All
agents and the server were deployed on different Sun Ultra 5
machines. It is obvious that for the same number of docu-
ments and agents, the total time required increased substan-
tially as compared to the experiment where only one agent is
classifying and others are assisting that agent.

Although, D-SIFTER has not been tested with a very large
number of agents, these experiments suggest that D-SIFTER
is scalable. In a real-world scenario, although the number
of agents will be fairly large, it is unlikely that at any point,
all the agents will be dealing with a large number of docu-
ments. Instead, the documents will be arriving at a reason-
able rate and will be classified and presented to the user con-
tinuously. We are also in the process of testing D-SIFTER
with much larger set of documents from the TREC collec-
tion (around 300,000 documents) and observing various pa-
rameters such as the number of centroids, the filtering perfor-
mance, the overall response time, etc. The preliminary results
indicate that D-SIFTER is able to handle such a large set of
documents well.

7. Future work

D-SIFTER is an on-going effort at IUPUI. Many different ex-
tensions and enhancements are currently underway. In con-
trast to the homogeneous nature of the agents in D-SIFTER,
we are are currently experimenting with a new architecture in

Table 4
Classification time.

No. of agents 3 6 9 12 15 18 21 24 27 30

2000 Docs. 1003 2983 5971 6023 6341 6548 6451 6622 6735 7029
3000 Docs. 1559 4050 8107 13473 13677 14022 14693 15074 15591 16073
4000 Docs. 2135 5203 10414 14214 14447 14373 16078 16152 16741 17057
5000 Docs. 2535 6433 12877 14674 14863 15784 16523 16899 17092 17556



HOMOGENEOUS AGENT-BASED DISTRIBUTED INFORMATION FILTERING 387

which agents are heterogeneous. Each agent provides a spe-
cific service and the filtering is achieved by a loose coalition
of a set of heterogeneous agents. Another effort is intended at
employing complex economical models. We are also adapt-
ing D-SIFTER to different application domains. At present,
D-SIFTER has been employed in three domains: Computer
Science, Health Care, and News. As the design of D-SIFTER
is OO-based, the migration to another application domain
requires minimal changes to thesaurus and input-box mod-
ules.

8. Conclusion

Distributed systems are omnipresent in today’s world. They
offer many advantages such as higher performance and the
exploitation of geographically dispersed computing/data re-
sources. Despite these desirable features, the design of dis-
tributed systems is far from simple. The presence of multiple
machines, interconnecting networks and partial failures add
the complexity of a successful design of a distributed system.
One way of taming this complexity is to follow the distrib-
uted object paradigm and use a language-dependent computa-
tion model, such as Java RMI, during the design and develop-
ment of distributed systems. In this article, we have presented
the design, based on Java RMI, of a distributed and multi-
agent information filtering system. This system achieves a
higher filtering performance by creating a collaborative net-
work of filtering agents. The simplicity and portability of
Java RMI have resulted in the creation of a robust proto-
type, which not only reduces the information overload on the
user, but also exploits the net-centric computing infrastruc-
ture.

Acknowledgements

This project is supported by the Digital Library Initiative
Phase 2. This is a joint program by multiple agencies: NSF,
DARPA, NASA, NLM, LoC, NEH, FBI, NARA, SI, and
IMLS.

References

[1] T. Berners-Lee, R. Cailliau, J. Groff and B. Pollermann, World-Wide
Web: The Information Universe, Electronic Networking Research, Ap-
plications and Policy, Vol. 2, No. 1 (Meckler Publications, Spring
1992).

[2] G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems: Con-
cepts and Design (Addison-Wesley, 1994).

[3] B. Kahle, An information system for corporate users: wide area infor-
mation servers, Technical report, Thinking Machine Inc. (1991).

[4] F. Kilander, IntFilter home page (1996). http://www.dsv.su.se/ fk/if_
Doc/IntFilter.html.

[5] D. Lewis, Representation and learning in information retrieval, Disser-
tation, Department of Computer and Information Science, University
of Massachusetts, Amherst (1992).

[6] M. McCahill, The Internet Gopher: A distributed server informa-
tion system, ConneXions, The Interoperability Report, Interop, Inc.
(1992).

[7] J. Mostafa, S. Mukhopadhyay, W. Lam and M. Palakal, A multi-level
approach to intelligent information filtering: Model, system, and
evaluation, ACM Transactions on Information Systems 15(4) (October
1997) 368–399.

[8] A. Moukas, Amalthea: Information discovery and filtering using a
multi-agent evolving ecosystem, in: Proceedings of the Conference
on the Practical Application of Intelligent Agents and Multi-Agent
Technology (1996).

[9] K.S. Narendra and M.A.L. Thathachar, Learning Automata – An
Introduction (Prentice-Hall, Englewood, NJ, 1989).

[10] R. Orfali and D. Harkey, Client/Server Programming with JAVA and
CORBA, 2nd Ed. (Wiley, 1998).

[11] S. Peng, M. Mukhopadhyay, R. Raje, M. Palakal and J. Mostafa,
A comparison between single-agent and multi-agent classification
of documents, in: Proceedings of IEEE Heterogeneous Computing
Workshop, HCW 2001 (2001).

[12] R. Raje, Z. Liu, S. Chinnasamy, M. Zhong, W. Mascarenhas and
J. Williams, Distributed-object computing, in: High-Performance
Cluster Computing, Vol. 2 (Prentice-Hall, 1999) pp. 249–273.

[13] R. Raje, S. Mukhopadhyay, M. Boyles and A. Papiez, An economic
framework for a web-based collaborative information classifier,
in: Proceedings of the International Association of Science and Tech-
nology for Development, SE’97 Conference (IASTED/ACTA Press,
Anaheim, CA, 1997) pp. 362–366.

[14] R. Raje, S. Mukhopadhyay, M. Boyles, N. Patel and J. Mostafa, On
design and implementing a collaborative system using Java-RMI,
in: Proceedings of the 5th International Conference on Advanced
Computing (Tata–McGraw-Hill, New Delhi, India, 1997) pp. 404–411.

[15] R. Raje, S. Mukhopadhyay, M. Boyles, A. Papiez, N. Patel, J. Mostafa
and M. Palakal, A bidding mechanism for web-based agents involved
in information classification, World Wide Web Journal, Special
Issue on Distributed World Wide Web Processing: Applications and
Techniques of Web Agents 1 (1998) 155–165.

[16] R. Raje, S. Mukhopadhyay, M. Qiao, M. Palakal and J. Mostafa, A
distributed information filtering system, in: Proceedings of World
Multiconference on Systemics, Cybernetics and Informatics, SCI’2000
(2000).

[17] G. Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer (Addison-Wesley, Reading,
MA, 1989).

[18] G. Salton and M.J. McGill, Introduction to Modern Information
Retrieval (McGraw-Hill, New York, 1983).

[19] Sun Microsystems, Java™ remote method invocation specification,
Technical report (1996).

[20] J.T. Tou and R.C. Gonzalez, Pattern Recognition Principles (Addison-
Wesley, Reading, MA, 1974).

[21] T. Yan and H. Garcia-Molina, Sift – A tool for wide-area informa-
tion dissemination, in: Proceedings of the 1995 USENIX Technical
Conference (1995).

Rajeev Raje is an Associate Professor in the De-
partment of Computer and Information Science at
Indiana University Purdue University Indianapolis.
Rajeev holds degrees from the University of Bom-
bay (BE) and Syracuse University (M.S. and Ph.D.).
His research interests are in distributed-object com-
puting, component-based systems and software en-
gineering. Dr. Raje’s current research has been sup-
ported by the US Office of Naval Research, National
Science Foundation and Microsoft Corporation. Ra-
jeev is a member of ACM and IEEE (Computer So-
ciety).
E-mail: rraje@cs.iupui.edu



388 RAJE ET AL.

Mingyong Qiao is a software engineer with Kinko’s
Inc. He got his M.S. in computer science from
IUPUI in 2000. His thesis was on distributed infor-
mation filtering systems.

Snehasis Mukhopadhyay is an Associate Professor
in the Department of Computer and Information Sci-
ence and an Associate Director (Bioinformatics) in
the School of Informatics at Indiana University Pur-
due University Indianapolis. Dr. Mukhopadhyay is
a holder of degrees from Jadavpur University, India
and the Indian Institute of Science, India as well as
a Master of Science and Doctorate in electrical engi-
neering from Yale University. Dr. Mukhopadhyay’s
research interests include Intelligent Systems, Intel-
ligent Control, Neural Networks, Multi-Agent Sys-
tems, Intelligent Information Filtering, and Bioinfor-
matics. He is a National Science Foundation CA-
REER Award recipient in 1996.
E-mail: smukhopa@cs.iupui.edu

Mathew Palakal is a Professor and Chair of the De-
partment of Computer and Information Science and
Director of Informatics Research Institute at Indiana
University Purdue University Indianapolis. He re-
ceived his Ph.D. in computer science from Concordia
University, Montreal in 1987. His primary research
interests are in pattern analysis and machine intelli-
gence. He is working on problems related to infor-
mation management using information filtering and
text understanding approaches and structural health

monitoring and smart diagnostics based on intelli-
gent computational methods.
E-mail: mpalakal@cs.iupui.edu

Shengquan Peng is a software engineer with Ver-
izon Wireless. He got his M.S. computer science
from IUPUI in 2001. His thesis was on multi-agent
systems.

Javed Mostafa is currently the Victor H. Yngve As-
sociate Professor of information science at Indiana
University, Bloomington. He holds a joint position of
associate professorship in the School of Informatics
and the School of Library of information science at
Bloomington. He also has formal faculty affiliations
with the Cognitive Science Program at IU, Bloom-
ington (core faculty) and the Computer and Informa-
tion Science Department (adjunct), at IUPUI, Indi-
anapolis. Dr. Mostafa’s research interest lies in intel-
ligent user interface design for information retrieval.
Current research projects include the Digital Li-
braries Phase II initiative of NSF (Award #9817572)

and the Information Technology Research Phase I
initiative of NSF (Award #0081944). He is member
of the ACM and its Special Interest Group on Infor-
mation Retrieval (SIGIR).
E-mail: jm@indiana.edu


