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ABSTRACT 
In this paper, the potential for expanding the set of scientific 
evidence and insights associated with the users’ role during the 
search process is explored. As it is intended to be a position paper 
and not a systematic survey, a comprehensive review of literature 
is not presented here. However, the authors draw on some early 
stage research, in this emerging area, to describe and explain the 
generation of neuro-physiological evidence using three types of 
modalities. The modalities and the associated methods described 
here, presented in order of increasing complexity, include Eye-
tracking, EEG, and fMRI. The paper concludes with a few critical 
observations regarding the promises and perils of using neuro-
physiological approaches in studying search and search behavior. 
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1. INTRODUCTION 
With the emergence of the CHIIR as a new venue and an important 
milestone in the continued development of the IR field, it is 
appropriate to take a reflective view and investigate new potential 
avenues of research and scholarship that the CHIIR may catalyze 
and help advance. We argue that the CHIIR marks a deepening of 
interest in understanding the role and the influence of humans in 
the search process and therefore it behooves us to bring up some 
additional areas or topics that have not thus far found appropriate 
outlets in the mainline IR venues or even in the well-established 
HCI-oriented forums. One such area is neuro-physiological (NP) 
methods in explicating the search process, particularly interpreting 
human-responses to search tasks and the influence of search 
complexity on search outcomes. In this paper, we begin by 
broadening the conceptualization of the search process by using 
humans' psycho-physiological condition as a frame for 
understanding search. We then use three particular modalities, 
namely Eye-tracking, EEG, and fMRI, as examples of NP methods 
to discuss the utility of such methods in elucidating the search 
process. Then we present an example of application of NP 
methods. Following this, critical advantages and disadvantages of 
NP methods are described. Finally, the paper ends with a set of 

aims for advancing the area of HII&R by integrating NP methods 
into the field of IR.  

2. BACKGROUND 
Search has largely been examined and studied in a manner which 
is agnostic to the human's psycho-physiological condition. That is 
in most IR studies that engage humans, the particular 
psychological or physiological condition of the humans are not 
directly measured and it is not the central focus of those studies.  
Yet, we must recognize that search is no longer an occasional 
activity that humans engage in. Humans no longer rely on search 
only to address specialized or complex information needs.  
Humans now conduct search frequently, under a variety of 
circumstances, and often as the first response when faced with an 
information need. It is therefore not a stretch to claim that search 
activity is now routine, highly personal, and interweaved with 
everyday activities of millions of users. A number of factors could 
be the cause for this change, but it is highly likely that wide-scale 
availability of computers and relatively affordable mobile devices 
promote more searching. It is well known that humans go through 
a wide variety of psycho-physiological conditions as they 
experience their world in the course of a single day, an hour, or 
even a few minutes. Hence, the psycho-physiological conditions of 
users are highly likely to trigger, shape, and influence humans’ 
search behavior and performance. Imagine how a muted response 
from an otherwise jolly friend can quickly reveal something is off 
and can become a powerful signal indicating that the friend is 
experiencing a “down period”. Now imagine how the same type of 
a psychological response, expressed in abnormal typing behavior 
or uncommon errors, detected by software could become a signal 
for tracking and understanding the human’s condition. There is 
strong likelihood that specific NP conditions and tracking them 
may open up a new window to understand humans’ behavior as 
they engage in searching. Given the fact that search has now 
become a significant activity of everyday behavior, it potentially is 
an untapped and underleverage source of insights and observation 
for humans’ psycho-physiological condition. 

2.1 NP Responses as a Two-way Street  
It should be apparent from the discussion above that the psycho-
physiological conditions of users both shape and in turn is shaped 
by their human-computer interaction (HCI) experience. To amplify 
our understanding of the role of the user in the interaction process, 
it is important that the identification of specific NP responses is 
conducted in isolation from efforts that focus on shaping or 
changing the NP responses by manipulating the interaction.  

In other words to establish the actual roots and the patterns of NP 
responses, research on NP methods, must begin by establishing 
reliable “healthy” or “normal” baseline responses to common 
search tasks. It is important to start with baseline responses and a 
carefully selected set of search tasks so that the corresponding NP 
responses can be predicted accurately and consistently from the 
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search tasks users perform (or typically perform). Such an 
investigation with the goal of establishing NP baselines may 
identify common regions in the brain that display neuronal 
activities as a response to fact-oriented searches (e.g., What is the 
capital of Colombia?). Or, in order to establish response to higher 
levels of cognitive load, such a line of NP research may 
purposefully and systematically increase the search task 
complexity and derive baseline EEG alpha wave forms and 
dynamics of pupil dilation from healthy and capable users that 
indicate the level of user engagement and deliberations necessary 
to execute complex search tasks.  

At this point, we feel it is necessary to introduce a critical concept 
for explaining the importance of baseline NP patterns. The concept 
is known as “markers” in biological and clinical research. The 
concept refers to concrete and robust physiological human 
characteristics that indicate a specific disease or abnormality. For 
example, the existence of a mutated form of BRCA1 gene is 
considered a strong indicator of the likelihood of eventually 
leading to cancer and hence it is a now a well-established “bio” 
marker. Similarly, we believe it is possible, upon careful 
observation and analysis of NP data to establish behavioral 
correlates or markers that indicate normal or abnormal psycho-
physiological conditions. For example, through careful scrutiny of 
neuronal activation patterns associated with simple fact- oriented 
searches we could establish a stronger basis for typical behavior 
and interaction responses of healthy and capable users. The 
baseline NP patterns would in other words assist in establishing the 
behavioral correlates (e.g., time to conduct such searches and error 
rates) as robust and consistent indicators or markers for a specific 
type of user group and a specific type of search tasks. Such 
behavioral markers in turn could be used to categorize search 
behavior more accurately, efficiently, perhaps even dynamically as 
search is taking place, without the need to rely on NP evidence. 
Hence, the larger goal of applying NP methods to establish 
baseline HCI patterns is to gain predictive accuracy and confidence 
in utilizing behavioral markers (Figure 1). 

The opposite side of the road in NP research is the potential for 
shaping and improving HCI as it takes place in searching. For 
example, as a derivative research, based on a good understanding 
of NP responses and behavioral markers (from the line of research 
described above), the interface and the interaction could be 
designed to be more intelligent and adaptive. If the behavioral 
markers indicate that the user is significantly off from “normal” 
responses, the response from the search software could be 
appropriately attenuated to gently “move” the user to more 
“normal” behavior or response.  For example, the elements of the 
interface could be adjusted to facilitate improved interaction (e.g., 
font size or placement of content on the screen). The line of 
research involving generation of adaptive responses to robust 
behavioral markers requires a highly precise way to classify 
interaction signals and detect subtle changes dynamically. 
Studying such dynamic adaption of interaction and their influence 
on search performance could be driven by both prior and parallel 
research on NP patterns, which would increase the confidence in 
adjustments to be made to particular interface components and 
their influence on the user’s response and performance.  

 
Figure 1. Two-way street of NP evidence: 1) First, correlating 
NP responses with specific behavioral responses in the context 
of search, and 2) Second, based on increased confidence in 
behavioral responses, leveraging them in adapting and 
improving interactions.  
 

3. NP METHODS FOR STUDYING SEARCH 
In this section, we discuss three NP modalities and methods. We 
chose Eye-tracking, EEG, and fMRI particularly as they have been 
used more often than other modalities and they represent a gradual 
increase in the level of complexity of NP methods. It is our 
intention to only offer an overview of these modalities in this 
section. We recommend the following  [5, 10, 20, 27, 31, 35, 38–
40, 47, 52] as relevant resources that scholars in the HII&R 
community may find useful.  

Based on the overviews presented in this section, our goal is to 
point out and motivate the potential applications of the three 
modalities in the context of human-information interaction tasks 
and to deepen our knowledge of NPs and to discuss some of the 
critical limitations or the pitfalls.  
 

3.1 Eye-tracking 
Eye-tracking (ET) is the oldest (dating back to late XIX c., [10, 
27]) and one of the most widely used NP modalities in IR research. 
The essential functioning of ET is based on eye-mind link 
hypothesis [29] which states that our attention is where our eyes 
are looking. While this statement needs to be qualified by 
considering covert attention, that is cases when our attention 
moves without our eyes moving, for the purpose of this paper, 
however, we will ignore this phenomenon, since, as explained 
below, it has little effect on textual IR.  
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At any point in time human eye can see with full acuity an area 
spanning less than 2° of visual field (roughly the size of a thumb at 
arm’s length). Therefore to see surrounding environment sharply, 
we need to move our eyes constantly. To perceive an object (e.g., a 
word) our eyes remain focused on the object for a short period of 
time (between tens of milliseconds to seconds) – this is called a 
fixation. Our eyes then move very fast to the next fixation (e.g., the 
next word) – this rapid eye movement is called a saccade. 
Saccades are very short (30-80ms) and are the fastest movement 
human body is capable of (30-500° per second).  

Eye-tracking hardware and software typically detects fixation 
events, while faster and more expensive eye-trackers are also able 
to detect saccade events. Fixations provide us with information 
where a user’s attention is focused on screen, or, more generally, in 
the environment. This link to attention has been used in HCI and 
IR research for over two decades [17, 28]. In the context of search 
eye-tracking informs us about user interaction with a search 
environment at different stages of the search process (Figure 2).  

 
Figure 2. A simplified four-stage search process [21]. 

At the query formulation and re-formulation stage (Q), we can 
learn from eye-tracking, for example, whether users pay attention 
to query suggestions or auto-completion [25, 37]. We can also 
learn the likely sources of user entered query terms [12]. We can 
do this by considering whether the entered words were fixated on 
in query suggestions or in documents. At the search results list 
review stage (L), we learn which search result surrogates users pay 
attention to, in which order, and how much time they spend on 
each of them [9, 17, 19]. At the document viewing stage (C), we 
learn which elements of a document are being paid attention to and 
which are not, how carefully a document is read and how much it 
is just skimmed.  

Eye-tracking can also help in understanding the search process 
complexity. In particular, in reading, which is relatively well 
understood in traditional settings [46], several indicators of 
cognitive effort were identified. The effort indicators include: 
fixation duration, the existence and number of regression fixations 
in the reading sequence (moving back in the sequence), the spacing 
of fixations in the sequence, the reading speed. Plausibly higher 
cognitive effort is taking place when users are acquiring new 
information, or are integrating that information with existing 
concepts. In this way, the eye-tracking based cognitive effort 
indicators may also identify when and how much learning is taking 
place during the search process. 

While examination of areas of visual attention based on fixation 
duration and their timing provides useful information, it is only 
one type of information eye-tracking delivers. More advanced uses 
of eye-tracking data include considering eye movement patterns 
and pupil dilation.  

In basic and applied psychology research, eye movements were 
used, for example, as a diagnostic tool in detecting dyslexia [16, 
43], mental workload [18] and even in biometric identification of a 
person [26, 32]. More interestingly for research in IR, distinct eye 
movements were found to be associated with memory recall [6], 

thus indicating a possibility of distinguishing internal (memory) 
and external (query suggestions, document text) sources of query 
terms.  

In interactive information retrieval, eye movement patterns have 
been used in investigating reading patterns on relevant vs. 
irrelevant documents/web pages [1, 2, 7, 20, 49]. We learn that 
different patterns are associated with different levels of document 
relevance (Figure 3). One should note that these patterns may 
depend on the text layout, which could limit their use as NP 
responses. More generally, investigation into reading eye 
movement patterns in the search process has a potential to move 
beyond the settings traditionally studied by psychology and to 
bring new knowledge not only to IR but also to cognitive and 
educational psychology.  

 
Figure 3. Eve movement reading patterns on irrelevant and 
relevant document [20]. 
Pupil dilation is arguably the most intriguing and most under-
utilized aspect of the eye-tracking method in application to IR. 
Pupil diameter is controlled by the Autonomic Nervous System 
[42]. Under constant illumination, it has been associated with a 
number of cognitive functions, including mental effort [30], 
interest [34] surprise [45], and making a decision. The sources of 
variation in pupil’s size are related to attention [24, 53] and, thus, 
plausibly, it should reflect some aspects of cognitive processing of 
documents. Indeed, recent results obtained in two experiments 
(N=24 and N=32) by one of the paper authors demonstrated pupil 
dilation on relevant and pupil contraction on irrelevant text 
documents and web pages [20, 23]. This effect is particularly 
apparent for changes in pupil size in the last couple of seconds 
before a participant’s relevance judgment. Other research have 
shown similar differences on image stimuli [41]. Pupil dilation on 
visits to relevant stimuli indicates, in part, a higher mental effort 
and an increased level of attention paid to relevant information. 
Pupil dilation analysis is independent of the layout, and thus it 
presents a good candidate for an NP response signal. 
 

3.2 EEG 
Electroencephalography gained popularity in clinical use, 
particularly to detect abnormal electrical signals that are highly 
correlated with brain disorders, drug effects, and lesions or brain 
damages. It is well-known that the brain is an extremely dense 
structure, consisting of billions of neurons, which interchanges 
signals at the rate of once every 5 milliseconds (thousandth of a 
sec).  Generally, in order to map the physiological responses of a 
brain the objective is to pinpoint the location of the signal as well 
as the strength of the signal. EEG is temporally precise in detecting 
signal instantiations, and based on modern signal converters the 
signals can be quickly characterized (or “filtered”) into specific 
wave patterns. The patterns are dependent on number of waves per 
second and the amplitude or height of each wave.  The amplitudes 
correspond to the strengths of the electric signals and modern 
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EEGs can detect signals in the range of 1/1 millionth of volt (or 
micro volt).  On the other hand, EEG is far less precise in terms of 
establishing specific brain locations where signals originate from, 
as it is placed on the surface of the brain and can detect signals 
close to the skull level and only in the range of centimeters1.  

The standard or common EEG wave patterns include alpha, beta, 
theta, and gamma waves. The common wave patterns represent 
specific frequency and amplitude patterns.  There are now several 
relatively inexpensive EEG tools in the market, specifically aimed 
at usability and human factors researchers that come with built-in 
hardware and software capabilities to capture, amplify, and 
represent all the common EEG wave patterns.  The relatively 
inexpensive EEG systems are wired and have few electrodes. 
While at the higher end are those that have numerous electrodes 
(thus offering better spatial resolution), have built-in amplifiers in 
each electrode, are wireless, and have customized classifiers and 
visualization software to support easier interpretation of data.  
Based on the alpha, beta, theta, and gamma waves it is possible to 
capture and determine brain signals that are un-induced (i.e., no 
special stimuli or tasks are used) and by comparing these wave 
patterns to well-known “normative” or “abnormal” patterns one 
can draw general conclusions regarding the status of the subject’s 
functioning brain. 

 
Figure 4. Variations observed in Alpha waves: 1) Top-most 
pattern representing the characteristic, typical wave form 
during relaxation, 2) The pattern in the middle is an 
intermediate stage when the subject is beginning to 
concentrate, and 3) The last wave, with the almost flat pattern, 
represents full attenuation while the subject is completely 
engaged in an activity with open eyes [11].  
In contrast to understanding the current status of a functioning 
brain, a researcher may wish to investigate the response of the 
brain to specific stimuli or tasks. When a specific NP response is 
elicited as a consequence of presenting a stimuli or a task, such an 
NP is called an induced or evoked response. It is possible to rely 
on the standard alpha, beta, theta, and gamma waves to discern and 
clarify their association with certain characteristic NP responses 
and what these responses imply. For example, it is well-known that 
when a subject is in a relaxed mood and/or has their eyes closed 
alpha waves are particularly prominent and have high amplitudes, 
and in contrast when the same subject opens her eyes and 
concentrates on a demanding task there is attenuation (i.e., 
flattening) of the alpha waves (see Figure 4). Similarly, it has been 
shown that numerous occurrences of beta waves in diverse 
frequencies and with low amplitudes indicate active concentration 
and anxious states.  
There are more precise characteristic response waves that have 
been demonstrated to strongly correlate with the onset of certain 
specific stimuli and these characteristic NP responses have been 
utilized in a wide variety of psycho-social studies. These responses 
are termed event-related potentials (ERPs) [36]. For example, the 

                                                                    
1 For a comparison, consider the fact that a square millimeter (one tenth of 

a centimeter) contains approximately 100,000 neurons.  

occurrence of P300 wave patterns2 has been linked to 
categorization and evaluation tasks, and particularly strongly 
associated in execution of odd-ball tasks involving detection of 
low-probability occurrences of stimuli. Similarly, the N400 wave 
patterns have shown to be prominently associated with analysis 
and processing of meaningful stimuli such as words, icons, faces, 
etc. Given the potential for generating human-responses such as 
concentration, categorization, and processing of symbolic and 
semantic stimuli such as words, it should be apparent to the reader 
by now that there are obvious opportunities to apply the EEG 
modality exclusively or complementarily in establishing a clearer 
understanding of the search process. We find examples of early 
applications of the EEG modality in IR in recently published 
papers [3, 13]. However, there remain certain critical limitations 
associated with the EEG modality that the human-information 
interaction researcher must be aware of and we will discuss some 
of these limitations in our concluding section. 
 

3.3 fMRI 
During brain’s engagement in support of executing tasks, blood 
flow to neurons in the specialized areas of the brain relevant to 
those tasks increases and correspondingly the oxygenation level in 
those specialized areas also increases. The powerful magnets in the 
MR machines are capable of detecting the subtle changes in the 
blood oxygenation levels. Thus, the measurement of neurological 
response based on the differentiated oxygenation levels is called 
blood-oxygenation level dependent measure or BOLD. A 
synonymous term also used to refer to changes in the blood 
oxygenation levels is known as the hemodynamic response (HR). 
In contrast to the EEG, the mapping of active sites or locations 
based on BOLD is highly precise, and it is typically captured as 
voxels (volumetric pixels) at the range of millimeter (one tenth of a 
centimeter). In contrast, however, the temporal resolution 
measured using BOLD is rather coarse – typically in the range of 
few seconds.  

Similar to the process of measuring the impact of evoked responses 
in EEG, while inside an MR machine a subject is presented with a 
stimuli or asked to conduct a simple task.  In order to enhance the 
effect of the task and gain clear evidence of the impact, subjects 
are typically requested to conduct the same task or the same type 
of task repeatedly while inside the MR machine.  The tasks are 
usually interspersed with short durations of “non-activities” or 
“resting” periods. An experimental session which utilizes repeated 
exposure to similar tasks with boundaries defined by resting 
periods is called an event-based session (or event-based design).  
To avoid the potential impact of the subject gradually learning 
from the repeated exposure to the same tasks, the session usually 
involves conducting a fixed of set of different types of tasks that 
are randomly interspersed in the even-based design.  

In a recent pilot experimental session, conducted by one of the 
authors of this paper, an event-based design was employed which 
involved two types of search result presentations: high precision 
(i.e., relevant search results were placed in high rank order) and 
low-precision. Subjects, while inside the MR machine, were shown 
a search question, for example, What is the capital of Japan? It was 
followed by a display one of two types of result-screens. Subjects 
were then requested to identify one relevant result from the screen 
by pressing a button representing the rank order of the relevant 

                                                                    
2 The numeric designator 300 represents a latency factor in 

milliseconds, post introduction of stimuli. 
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item in the result-screen, where each result item was labeled with 
the corresponding rank order e.g., 1, 2, 3. Each subject was 
requested to perform 80 scan tasks, divided into blocks of 16, with 
5 resting boundary intervals separating each block of tasks. During 
the resting intervals subjects were presented with a screen 
containing only a “+” sign.  Every task took about half a minute 
and the intervals were about 1 second long. To minimize the 
impact of the learning-effect, the scan tasks were randomly 
interspersed in the event-based session. The hemodynamic 
responses or BOLD measures were collected from all the subjects 
(n=12), and they were pooled, averaged, and mapped to the surface 
area of the brain in order to facilitate interpretation of the resulting 
neurological response. As can be seen in the Figure 5, the 
neurological impact of scanning for relevant items is clearly 
differentiated from the resting modes (also known as fixation 
modes). 

 
Figure 5. Brain-surface area mapping of fMRI BOLD signals 
collected from 12 subjects contrasting fixation with the search 
result scanning. The left and right lateral views of the brain 
surfaces are shown. The large dark patches on the brain 
surfaces represent those areas that were active during 
scanning modes but NOT active during the resting or fixation 
modes.  
A fulsome description of the fMRI pilot study is out-of-scope for 
this position paper.  Additional details on the experimental design, 
results, and analysis can be found in a recently published paper 
[40]. Here, we only provide a small glimpse of the fMRI results to 
point to the potential application of fMRI for generating NP 
evidence for investigating the impact of search related activities on 
the brain. As can be seen in Figure 5, a highly active area while the 
scanning tasks were being completed is the prefrontal cortex 
(PFC). It is known that the lateral PFC is generally associated with 
working memory and decision making; particularly, in the PFC the 
ventral regions are associated with working memory and the dorsal 
regions are associated with decision making process. Given that 
the scanning task is strongly verbal in nature, which involves 
reading and interpreting the search question and the search results, 
it is not a surprise to find the dominant role of various PFC regions 
while subjects execute the scanning tasks.  

 

In another pilot fMRI experiment conducted by one of the paper 
authors, a difference in brain activations between reading relevant 
and not-relevant short text documents was investigated [22]. The 
fMRI environment and the essentials of this experimental design 
bear many similarities with the first study described above. The 

experimental design was also event-based, but in this case it 
consisted of 21 trials that contained irrelevant, partially relevant 
and topical text documents in randomly changing order (Figure 6).  

The findings from this experiment indicated that reading and 
deciding on relevance of relevant vs. not-relevant documents was 
characterized by increased activity in middle front gyrus, an area 
of frontal lobe that has been generally associated with executive 
mechanisms and decision-making. This finding also comes with 
little surprise, since judging relevance certainly involves areas of 
brain responsible for decision-making. While this early results 
shed some light on cognitive processes engaged in relevance 
judgments, we are just at the beginning of this new research 
territory. 

In order to establish more precisely the contributions of specific 
brain regions to execute search tasks, it would be necessary to 
examine full search cycles: starting with a question, to query 
formulation, to execution, to revision, and finally to interpretation 
stages. As far as we know, no one has examined full search cycles 
inside fMRI machines. Additionally, of course, the association of 
search types (i.e., tasks) and search difficulty with specific brain 
regions also remain unexamined.  To be sure, we must note here, 
the challenges associated with applying fMRI as a tool for 
generating NP evidence are immense and some are potentially 
impossible to overcome. We will discuss some of the key 
challenges associated fMRI and the other two modalities in the 
next section. 
 

4. PROMISES AND PERILS OF NP 
EVIDENCE  
In this section, we will discuss some fundamental advantages and 
disadvantages associated with NP-based methods in investigating 
search interactions.  
 

4.1 Balancing the Good with the Bad 
When researchers study search behavior, either retroactively by 
scrutinizing search log data or proactively by collecting data from 
search performance, the analysis is always strongly dependent on 
the context of the search (e.g., task scenario, time allocated, and 
even location of experiments). It is also well-known that search 
experiments that involve collecting self-report data face the risk 
that the nature of interactions or relationship between the 
experimenter and the searcher may impact the quality of the 
experimental data generated (i.e., the risk of response bias). Thus, 
any insights to be gained from such behavior-oriented experiments 
regarding critical cognitive and psychological factors, causal or 
associated, must always be achieved second-hand, based on 
assumptions or stipulations regarding what the data represents 
about the user’s actual mental condition or physical status.   

Neuro-physiological signals as indicators of human engagement 
and responses to search tasks comes with the great promise of 
“lifting the lid” of the black-box that is the searcher’s state-of-mind 
or his/her physical condition. If NP data are collected carefully and 
with appropriate level of control, while subjects engage in search 
tasks, it may reveal a wide array of additional clues regarding 
factors such as level of cognitive effort (e.g., load), type of effort 
(e.g., verbal vs. motor planning), anxiety, stress, curiosity, arousal, 
and even pleasure. We contend that a particularly powerful 
approach to amplify and clarify the clues regarding searching is to 
collect and correlate behavioral data with NP data. Such an 
approach may lead to more precise prediction of search activities 

Figure 6. Experimental Design of the second pilot study. 

67



and the quality of search performance, based only on monitoring 
behavioral responses during the search process3. Last but not least, 
NP approaches open up the possibility of gathering evidence that 
are not directly expressed (or even expressible) by the searcher. 
Thus, it may be possible via an NP-driven approach to unearth 
deeper and more nuanced insights regarding a subject’s response to 
a search task and arguably such evidence is immune from being 
tainted by response bias.   

We would, however, like to end this paper with a strong note of 
caution regarding problems associated with NP methods. First and 
foremost, it should be amply clear by now that NP approaches may 
be extremely intrusive, and while they may reduce or eliminate one 
type of problem (e.g., contamination of data due to response bias), 
at the same time they may introduce new type of problems. How a 
researcher should set up an experiment to elicit useful NP evidence 
while preserving realism of the search context remains a great 
barrier. Applying NP approaches may involve transforming the 
search context to such a degree that it becomes an artificial or 
unrealistic condition, thus compromising external validity and 
generalizability of the findings. Second, a big obstacle is the wide 
variety of standards and metrics that NP tools employ in 
categorizing and reporting the critical interaction data. For 
example, we know fixation durations and pupil dilations are 
important parameters that are employed in measuring eye 
movement activities during interactions, however, much more 
evidence is needed as to what they actually represent in terms of 
cognitive processing and mental load associated with specific types 
of search tasks. The lack of clarity regarding these metrics remains, 
in large part, due to the opacity and obstacles researchers face 
when they seek information from NP tool vendors. Third, although 
one may be able to pinpoint a specific a physiological location 
associated with an NP signal, it may not actually translate to a 
clear understanding of what that signal means. The challenge in 
associating a specific function to a location is particularly relevant 
to the brain. Researchers must be cautious to avoid reverse 
inferencing [44]; that is, after already being aware of functions that 
are associated with specific brain locations, based on evidence 
collected by past studies, the inclination is to attribute the causality 
of, or the association with specific triggering factors in the new 
experimental condition (i.e., specific stages or activities of a search 
task) to those brain regions. Given that a brain region is actually 
capable of playing different roles for different human activities, 
additional research is needed to identify the functions those regions 
dominantly or consistently represent and how they contribute to 
search tasks. It has to be emphasized here that functional mapping 
of the brain is still an emerging area, and, particularly, the 
knowledge of connectivity among brain regions and the 
information exchange among specific regions is just beginning to 
be established. Therefore, establishing contributions of specific 
brain regions to a high-level cognitive activity such as search needs 
to be approached extremely cautiously. Fourth and the final point 
we would like to make is regarding the parameters and settings 
associated with instruments, both software and hardware, used 
during NP experiments and the lack of a tradition in sharing key 
details regarding these parameters. Utilizing each NP instrument 
and the software demands manipulation and appropriate 
initialization of a large number of parameters. The omission of 
details along with published results deters reproducibility, makes 
validation difficult, and may delay further advances in the field. 

                                                                    
3 We referred to such behavioral indicators as “markers” earlier in this 

article. 

5. AN ILLUSTRATIVE EXAMPLE 
One example will serve as an illustration of how one might move 
from considering information retrieval phenomena to the space of 
NP concepts and then to NP markers. Historically, dwell time has 
been suggested as a good indicator of user interest in a document 
and thus of its relevance [8]. Subsequent research showed that the 
length of time a user spends viewing a document does not correlate 
significantly with the user’s explicit relevance assessments [33]. 
Ambiguity of dwell time comes from its association with user 
interest in information as well as with problems encountered by 
users in processing this information. Total dwell time on a 
document includes periods of actual reading and processing a 
document and periods of not attending to the document. We 
translate interest into attention given to a document and possible 
problems associated with reading difficulty or lack of attention 
(e.g., mind wandering) and model dwell time on a document as 
composed of several critical components, 

 

where td is dwell time on a document; ttr is typical reading time; tdr 
is additional time required for reading of difficult text; tmw is time 
spent on mind wandering; and, ε is error term.  
At a simple level, attention can be assessed by considering time 
spent on reading. This metric can be obtained from eye-tracking as 
total duration of eye fixations on text. Prior research showed that 
using eye-tracking measures improves document relevance 
classification as compared to using dwell time alone (Gwizdka 
2014). Let us now consider text difficulty (readability) and word 
frequency. These metrics can help to account for individual 
differences in reading time between users as well as for differences 
between documents. We can further improve measurement of 
dwell time components by detecting and subtracting periods of 
mind wandering (“daydreaming”). Mind wandering is defined as 
decoupling attention from perception and from immediate task. 
During reading, when the mind wanders to unrelated feelings and 
thoughts, the eyes continue to scan the words but without close 
attention to their meaning. The periods of mindless reading that 
result are characterized by longer fixations and reduced sensitivity 
to lexical features [48, 51]. Application of these measures requires 
building a model of text, making it somewhat difficult to apply the 
measures. However, a few other NP markers, can be applied 
without considering text features. Larger pupil dilation (PD) was 
found as a NP marker of mind-wandering while reading [14]. 
Other NP markers of potential interest include spectral features of 
EEG signal and ERPs. For example, mind wandering was shown 
to generally reduce brain signal responses to perceptual events 
(within 100ms) and to task related events (the aforementioned 
P300 wave patterns) [50]. Furthermore, mind wandering was found 
to be characterized by a power amplitude increase in the theta and 
delta frequency bands and an amplitude decrease in the alpha and 
beta frequency bands. The alpha-peak frequency increase was 
found to be a likely marker of the attentional switch between mind 
wandering and the focused task [4]. These NP markers may be 
potentially helpful in developing a “cleaner” measure of dwell time 
on documents. IR researchers who plan to take advantage of NP 
metrics presented in the example here should take into 
consideration some key factors associated with them. While some 
NP markers were obtained based on search activities  (e.g., PD 
during reading) and are thus directly applicable, others such as the 
EEG metrics were obtained in different contexts (e.g., based on 
simple visual and auditory tasks). This points out the difficulty of 
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translating research findings from cognitive neuroscience to IR and 
the need for further studies that exclusively concentrate on NP 
metrics associated with search tasks .  
 

6. CONCLUSION 
Despite the challenges, NP approaches hold immense promise in 
advancing human-information interaction scholarship. Beyond IR, 
NP approaches are finding wider usage in domains such as 
learning, entertainment, and health care. Some of the press releases 
and video announcements describing the amplification of human 
capacities can be quite seductive (e.g., children playing computer 
games by wearing EEG skull caps). Generally, we do hope that 
human-information interaction researchers would look beyond IR 
and would investigate and learn from a wide variety of interaction 
modalities in related domains. Such a broad approach in studying 
interaction, however, should be conducted with some caution, as 
the contexts of user engagement, their roles, and the goals can vary 
greatly.  

In this paper, we focused exclusively on investigating the prospects 
of pursing NP approaches as they pertain to information retrieval. 
We end this position paper with a list of goals as a way to integrate 
NP approaches into mainstream research and methods in HII that 
focus on search. First, researchers need to concentrate on 
establishing standardized search tasks. These search tasks need to 
be carefully established in terms of individual steps and realistic 
contexts. Second, there is a strong need to evaluate the 
standardized search tasks and generate baseline NP data. The latter 
line of research could be driven with the goal of creating a solid 
foundation of behavioral markers and their NP correlates.  Third, 
whenever possible, the NP outcomes and their interpretations (e.g., 
cognitive load or stress) should be cross-validated with more than 
one NP modalities. For example, EEG can be combined with Eye-
tracking while the subjects are engaged in the same set of tasks 
[15]. Fourth and the final recommendation is to conduct NP-
oriented research as transparently and as openly as possible by 
sharing details regarding the environmental contexts such as 
software and device settings and other critical details regarding the 
experimental conditions. 
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