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There has been considerable interest in recent years in
providing automated information services, such as in-
formation classification, by means of a society of collab-
orative agents. These agents augment each other’s
knowledge structures (e.g., the vocabularies) and assist
each other in providing efficient information services to
a human user. However, when the number of agents
present in the society increases, exhaustive communi-
cation and collaboration among agents result in a large
communication overhead and increased delays in re-
sponse time. This paper introduces a method to achieve
selective interaction with a relatively small number of
potentially useful agents, based on simple agent model-
ing and acquaintance lists. The key idea presented here
is that the acquaintance list of an agent, representing a
small number of other agents to be collaborated with, is
dynamically adjusted. The best acquaintances are auto-
matically discovered using a learning algorithm, based
on the past history of collaboration. Experimental results
are presented to demonstrate that such dynamically
learned acquaintance lists can lead to high quality of
classification, while significantly reducing the delay in
response time.

1. Introduction

In recent years, cooperative information agents have
been introduced as an important new methodology for de-
signing complex information systems (Communications of
the ACM Special Issue, 1994). Such systems provide infor-
mation services such as searching, retrieving, classification,
and filtering to users or user communities. The multiple
agents cooperate with each other in order to speed up

computation, complement each other’s capabilities, share
each other’s knowledge structures, or improve the efficiency/
quality of information services.

In Raje et al. (1997a; 1997b) a multi-agent information
classifier system was introduced, where the agents were
equipped with disparate vocabularies/thesauri enabling
them to represent and classify documents related to their
own thesaurus. (In this paper, we use the term ‘thesaurus’ to
mean a linear list of keywords describing a domain of
interest with an imposed synonym structure). Such infor-
mation classification has been used as a crucial intermediate
stage for both single-agent (Mostafa et al., 1997) as well as
multi-agent (Raje et al., 2000) information filtering systems.
In the case of multi-agent information classification and
filtering, the disparate nature of the thesauri of the agents
may be caused by the different domains of information, or
independent term discovery or adaptation processes in the
agents. For example, the agents may be personalized to
different users’ interests covering different domains. When
an agent is unable to represent and classify an incoming
document using its own thesaurus, it seeks help from other
agents (possibly with different thesauri). In experimental
studies on classification tasks involving up to 3 agents with
disparate thesauri in the area of computer science docu-
ments, a performance improvement of up to 61% was ob-
served as compared to the performance of a single agent
operating in isolation (Raje et al., 1997a).

In all such multi-agent information systems (including
the multi-agent classifier system), very little is known about
the scalability of these systems with increasing numbers of
agents. In particular, if an agent interacts with all other
agents, the communication overhead as well as the response
time for the given agent, may be expected to grow at least
linearly with the total number of agents in the agent society.
Hence, exhaustive interaction with all other agents becomes
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practically infeasible for relatively large-scale open infor-
mation agent societies.

To circumvent this problem, the notion of acquaintance
lists has been introduced in the multi-agent research litera-
ture (Salampasis, 1995). An agent explicitly maintains a list
of other agents that it wishes to interact with. In the event
that a desired performance level can be achieved with
relatively few acquaintances, such a control mechanism for
interaction can significantly reduce the response delay and
collaboration overhead. The acquaintance list mechanism
represents the underlying agent society by means of an
acquaintance graph structure which, unlike exhaustive in-
teraction, is not completely connected.

A problem that arises in such selective agent interactions
using acquaintance lists, is how the acquaintances of a
particular agent are determined. In an off-line method, such
acquaintances may be hard-coded by the system designer.
However, this results in a considerable amount of effort on
the part of the designer and may not result in the best set of
acquaintances. Further, in an open, relatively large-scale
agent society that is possibly distributed over a wide area,
agents may cease to operate or new agents may originate in
an unpredictable manner. In such an environment static
acquaintance lists may not be adequate for dealing with
dynamic changes in the agents society. Therefore, there is a
need for methods to automatically learn about the “best”
acquaintances based on suitable agent models created and
updated using on-line interaction experiences.

In this paper, we present the notion of dynamic acquain-
tance lists where the acquaintances of an agent are learned
and updated by means of a learning algorithm, based on the
history of past interactions. The algorithm starts with a
random list of acquaintances and gradually evolves to se-
lecting the best acquaintances, according to some criteria.
We study such adaptive acquaintance lists in the context of
a multi-agent information classification system. We mea-
sure the classification performance both in terms of number
of successful classifications, as well as by means of an
algorithm-specific classification quality measure. We show
that near optimal classification performance can be achieved
with adaptive acquaintance lists in both cases. These exper-
imental studies indicate that learning acquaintances is a
promising alternative to assigning them in a pre-determined
manner. Hence, such dynamic acquaintance lists constitute
an essential approach to designing relatively large-scale
multi-agent information systems.

The paper is organized as follows. In section 1.1, we
present some related work in the areas of multi-agent sys-
tems and multi-agent information systems, and place this
paper in the context of such work. In section 2, we present
the background and preliminary discussions on information
classification and multi-agent information classification.
This is essential in understanding the main contributions of
this paper which are described in sections 3, 4, and 5.
Section 3 presents experimental studies motivating the need
to use acquaintance lists. Section 4 describes the algorithm
used to learn and reconfigure acquaintances in multi-agent

information classification. Section 5 describes experimental
results with dynamic acquaintance lists for multi-agent in-
formation classification without and with agent failures.

1.1. Related Work

Multi-agent Systems have grown out of the Distributed
Artificial Intelligence community. Durfee (Durfee & Mont-
gomery, 1989) defined a multi-agent system (MAS) as “a
loosely coupled network of problem solvers that work to-
gether to solve problems that are beyond their individual
capabilities.” These problem solvers, which are essentially
autonomous, distributed, and maybe heterogeneous in na-
ture are called “agents” and usually have a single focus of
control and/or intention. Multi-agent systems offer a way to
relax the constraints of centralized system and provide
systems a decentralized, emergent and concurrent environ-
ment. The advantages offered by multi-agent systems are
(Baker, 1996): 1. Fault-tolerance: agents are an inherently
distributed mechanism and thus a system made of autono-
mous agents will not collapse when one or more of its
components fail as there will not be any single point of
failure. 2. Modular software, scalable architecture: The rea-
son agents are such powerful entities is because of the
factorization of the problem they provide. Each agent can be
identified as an entity and thus facilitate incremental growth
and flexible expansion. The advantage of scalability is pro-
vided as each agent can join a system, start working with
other agents, or just leave a system once it has finished a
plan it was engaged in without affecting the operation of the
system. 3. Flexible systems: agents with different abilities
can dynamically team up to solve current problems.

In Sycara and Zeng (1996) and Sycara et al. (1996) the
authors investigated techniques for developing a distributed
and adaptive collection of information agents that coordi-
nate to retrieve, filter and fuse information relevant to the
user, task, and situation, as well as anticipate user’s infor-
mation needs. They presented a distributed system architec-
ture, called RETSINA (Reusable Task Structure-based In-
telligent Network Agents), which has three types of agents:
interface agents, task agents, and information agents. In the
system of agents, information gathering is seamlessly inte-
grated with decision support. The MACRON (Multi-agent
Architecture for Cooperative Retrieval Online) multi-agent
system (Decker & Lesser, 1995) uses a centralized planner
to generate sub-goals that are pursued by a group of coop-
erating agents, using KQML, a standardized language for
inter-agent communication and negotiation. Amalthaea
(Moukas, 1996) is an evolving, multi-agent ecosystem for
personalize filtering, discovery and monitoring of informa-
tion sites. Two different categories of agents are introduced
in the system: filtering agents that model and monitor the
interests of the user and discovery agents that model the
information sources. These two agents compete and coop-
erate to serve the user. SIGMA (System of Information
Gathering Market-based Agents) (Karakoulas & Ferguson,
1995; Ferguson & Karakoulas, 1996) involves decentralized
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decision making for the task of information filtering in
multi-dimensional document spaces such as the Usenet
news. Different learning and adaptation techniques are in-
tegrated with SIGMA for creating a robust network-based
application that adapts to both changes in the characteristics
of the information available on the network as well as to
changes in individual user’s information interests. RAAP
(Research Assistant Agent Project) (Delgado et al., 1998)
was devoted to support collaborative research by classifying
domain-specific information retrieved from the Web, and
recommending these “bookmarks” to other researcher with
similar research interests.

To our knowledge, the relatively narrow but well-defined
problem of multi-agent information classification using
multiple agents with different thesauri (vocabularies), has
not been investigated by others. This is the problem con-
sidered in the current paper. Further, a solution approach is
presented for the problem of learning acquaintances (the
most promising remote classification agents) and reconfig-
uring them in the presence of agent failures. This is an
important contribution of this paper, which, to our knowl-
edge, has not been presented in the literature.

2. Multi-agent Information
Classification—Background and Preliminaries

As stated in the introduction, the overall problem being
addressed by the society of agents is one of information
classification. This is accomplished in each agent by first
representing a text document as a vector of real numbers
and then classifying the vector using an unsupervised clus-
tering algorithm. The particular representation algorithm
used is the tf.idf (term frequency-inverse document fre-
quency) method, based on a vector-space model (Salton,
1988). In this, a domain-specific thesaurus (vocabulary) is
used that contains a set of terms from the domain of interest.
The elements of the vector qualitatively correspond to the
strength or importance of the corresponding terms in the
thesaurus. The classification algorithm used by each agent is
based on the Maximin Clustering (Tou & Gonzalez, 1974)
where a set of centroid vectors are determined from a
representative collection of documents as an a priori oper-
ation, and classification is conducted on-line based on sim-
ilarity of new documents to centroids. The representation
and classification algorithms are briefly described in Section
2.1 and 2.2 respectively.

The distinguishing feature between the multitude of
agents is assumed to be the disparate nature of their thesauri.
As mentioned in the introduction, this may be due to several
factors including, difference in the domains of information
that the agents are designed for, personalization of each
agent’s thesaurus to different users, and independent auto-
matic term discovery process carried out by agents.

When an agent’s own thesaurus is inadequate to repre-
sent an incoming document, the representation algorithm
generates a so-called null vector: a vector where all ele-
ments are zero. In such a case, the classification algorithm

labels that document as unclassified. However, in the agent
society, there may be a remote agent with a different the-
saurus that may have the ability to classify a document that
cannot be classified by the local agent. The objective of
multi-agent classification is to minimize the occurrences of
unclassified documents through collaboration among mul-
tiple classifier agents by exploiting the natural diversity of
their thesauri. In the following sections key components and
architecture of the system, associated algorithms, and high-
lights of experimental results from earlier studies are de-
scribed.

2.1. Representation of Documents

The representation algorithm is responsible for convert-
ing a document into a numeric structure that can be used for
classification. To accomplish this, we use the vector-space
model (Salton, 1988) for representation and the popular
tf.idf technique to establish a degree of importance for each
term in that document. In this algorithm, the following
equation is used to calculate the elements of the document
vector:

Wik � Tik � log�N/nk�

where Tik is the number of occurrences of term Tk in the
current document i, log(N/nk) is the inverse document fre-
quency of term Tk in the entire document set, N is the total
number of documents in the document set, and nk is the
number of documents in the set that contains the given term
Tk. It is this vector that is used for classification. If none of
the terms present in the thesaurus occur in the document, all
elements of the vector will be zero. This is called a null
vector which results in a classification failure.

2.2. Classification of Documents

The classification of documents is based on a similarity
measure between the documents (or, more precisely, their
document vectors). The measure used for computing the
similarity between two document vectors is the cosine sim-
ilarity measure (Salton, 1988). Given two non-null docu-
ment vectors X � [xq, . . . , xt]

T and Y � [yq, . . . , yt]
T, the

similarity measure represents the cosine of the angle be-
tween them and is given by

�
i�1

t

xiyi����
i�1

t

xi
2�� �

i�1

t

yi
2� .

The classification consists mainly of two processing
stages: an unsupervised cluster learning stage and a vector
classification stage. During the learning stage, initial cluster
hypotheses [C1, . . . , Ck] are generated from a representa-
tive sample of document vectors [S1, . . . ,SN]. Each cluster
Ci is then represented by its centroid, Zi. During the classi-

968 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2003

 15322890, 2003, 10, D
ow

nloaded from
 https://asistdl.onlinelibrary.w

iley.com
/doi/10.1002/asi.10292 by U

niversity O
f T

oronto L
ibrarie, W

iley O
nline L

ibrary on [16/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



fication stage, an incoming document vector Vi is classified
into a particular class Ck using the learned centroids from
the first stage. The learning of cluster centroids is done in an
off-line batch mode while classification is carried out con-
tinuously as documents arrive.

A simple heuristic unsupervised clustering algorithm,
called the Maximin-Distance algorithm (Tou & Gonzalez,
1974), is used to determine the centroids over the document
vector space. In this iterative algorithm, at each stage, a
document vector from the document set is selected that has
the least similarity with the existing centroids. The similar-
ity of this document vector with the existing set of centroids,
in turn, is the maximum of its similarities over all centroids.
The selected point is then added as a new centroid if and
only if its similarity with the the existing set of centroids is
less than an implementation-specified threshold parameter.
This process is continued until no new centroids can be
identified.

During classification each new document vector is clas-
sified to one of the centroids that has the largest similarity
with the document.

2.3. Multi-Agent Collaborative Classification

The goal of any information classification is to obtain the
most successful and accurate classification. Multi-agent col-
laborative classification is built upon a single agent classi-
fier by creating an inter-connected environment of agents to
maximize the possibility of achieving this goal. In this
environment, all agents are allowed to collaborate over the
network with the intention of achieving a higher rate of
successful document classification for their users than what
is possible only by the local agent. As mentioned earlier, the
agents differ in terms of their thesauri and their ability to
classify different domains of documents. This section pro-
vides a brief description of the collaborative methodologies
behind multi-agent information classification as well as
some results of earlier experiments.

(i) The collaboration environment. The experimental en-
vironment consisted of a variable number of classifier
agents executing on Sun Sparc machines via Ethernet with
the Solaris 2.3 operating system. The agents were imple-
mented using JAVA and agent collaboration was achieved
using the JAVA-RMI (remote method invocation) utilities.
A set of 81 terms from the domain of computer science
constituted the master thesaurus which was broken up into
9 disjoint smaller thesauri, and distributed among the
agents. The list of terms in the thesaurus is not presented
here to conserve space, but can be found in Mostafa et al.
(1997, p. 383) Hence, when the number of agents were
greater than nine, some agents could have same or overlap-
ping thesauri. In our earlier studies, the communication
between the agents were indirect in nature, i.e., based on a
common server. However, in the experimental studies pre-
sented in the paper, the agents communicated directly with

each other. Since multicasting to multiple agents was not
possible using the JAVA remote method invocation (RMI)
method, it was simulated by repeated sequential communi-
cation of requests to remote agents (e.g., the acquaintances).
Despite the difference in the underlying thesauri, all classi-
fiers functioned in an identical manner, that is they imple-
mented the same representation and clustering algorithms
discussed earlier.

(ii) Collaborative models. Two kinds of collaborative
models were developed: single-opinion model and multiple-
opinion model. Both models used a simple overall algo-
rithm—Attempt to classify my own documents first, then if
there is time, try and help other remote agents (Raje et al.,
1997a; Raje et al., 1997b). The major difference between
these models is the number of remote agents that are given
the opportunity for classification. The single-opinion model
allows only one remote agent an attempt at the classifica-
tion. This is not desirable for two reasons. First, the agent
that attempts the remote classification is randomly chosen
and secondly, due to this randomness, the selected agent
may not be able to classify that document successfully.
These two drawbacks are eliminated in the multiple-opinion
model. The multiple-opinion model allows all remote
agents an attempt at classifying a remote document. It
represents the real-world by allowing different agents (with
varied expertise) to participate in the collaboration. Such a
collaboration has been found to result in better classifica-
tions (Raje et al., 1997a; Raje et al., 1997b). The most
difficult problem of this model involves managing multiple
remote agents. Critical issues include waiting for all agents
to complete their classification and the overhead of deter-
mining the best classification (also known as selection
criteria). Both single- and multi-opinion models make use
of a “time-out” period. This wait period has implication for
the ultimate utility of classification, i.e., once an agent asks
for classification assistance, how long should it wait before
the use of the document or the document itself becomes
obsolete?

3. An Experimental Study Motivating the Need for
Using Acquaintance Lists

In this section in order to motivate the need for an
intelligent means of acquaintance selection, we present ad-
ditional experimental results on the impact of increasing the
number of agents in a multi-agent environment on classifi-
cation performance.

3.1. Response Time and Classification Performance with
an Increasing Number of Agents

In the multiple-opinion model described in Section 2.3, it
was assumed that an agent, when confronted with a locally
unclassified document, seeks collaboration from all other
agents. In previous studies, this method of exhaustive col-
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laboration was possible due to the small number of agents
(e.g., only three agents). As the number of agents is in-
creased, the overheads and delays with exhaustive commu-
nication is expected to increase. In order to study the effects
of increasing the number of agents, we conducted classifi-
cation experiments with a relatively larger number of agents
(up to 30 agents) employing the multiple-opinion model for
collaboration. Our objective was to experimentally study
the classification performance in terms of the number of
successful classifications as well as the average response
time (i.e., the average time needed for local and collabora-
tive classification) with increased number of agents engaged
in exhaustive collaboration. A classification was defined as
successful if the result was a non-zero similarity value or a
non-null vector assignment (treated as the same).

In the experimental scenario, one agent was engaged in
classifying 500 documents, while all other agents were idle
except for responding to remote requests. Figure 1 shows
the percentage of successful classifications for the given
busy agent (including local and remote classifications),
while Figure 2 shows the corresponding response time, as
the number of agents is increased, beginning with 2 and
with a maximum of 30 agents. It is seen that, in the given
situation, the classification performance quickly saturates
with increased number of agents. For example, even with as
few as eight agents, we get 429 successful classifications,
while with 30 agents the performance improves further only
by 11 more successful classifications. On the other hand, the
average response time (averaged over all documents) is seen
to grow almost linearly with the number of agents. For
example, with eight agents, the response time is 552 milli-
seconds, while the response time is 897 milliseconds with
30 agents. This clearly demonstrates that even when there
are as many as 30 agents, it might be possible to achieve a
satisfactory performance by interacting with only eight
agents. In fact, as we will demonstrate later, by selecting the
agent properly, it might be possible to achieve 92% of the
maximum achievable performance by interacting with only

four out of 30 agents. On the other hand, interacting with
only four instead of all 30 agents will reduce the response
time significantly. We believe that such a behavior is ge-
neric in nature irrespective of the particular document do-
main used in these studies.

In the case of such selective interactions, we call the
selected agents as acquaintances of the given agent. Thus,
each agent is assumed to have an acquaintance list which is
a subset of the set of all agents. An agent will seek collab-
oration only with agents in its acquaintance list, and not
with every other agent.

4. A New Approach to Dynamic Learning of
Acquaintances

In this section, we describe the main problem we con-
centrated on in this study and details of the learning algo-
rithm known as the pursuit learning algorithm. We also
describe a higher level method of reconfiguring the lower
level acquaintance learning algorithm to deal with dynamic
changes in the agent environment.

4.1. Problem Statement: Dynamic Learning of
Acquaintances

Denoting the set of agents by A � {A1, . . . , AN}, the
acquaintance list of an agent Ai is defined to be Li, which is
a subset of set A. It is assumed that ni, the cardinality of Li

(the number of elements in Li), is known from prior analy-
sis. For example, in the multi-agent classification problem,
from experimental analysis, it was decided that having ni �
4 acquaintances is adequate in an agent society with 30
agents.

The problem is to determine which ni agents out of the
set of A should be chosen as the members of Li, so as to
maximize the classification performance for agent Ai. The
classification performance may in turn be defined by the rate

FIG. 1. Classification success rate.

FIG. 2. Response time with increasing number of agents.
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of successful classifications or by some algorithm-specific
classification quality measure as discussed later in the paper.

In an off-line approach to determine the acquaintances,
the system designer may hard-code the acquaintances based
on knowledge of their respective thesauri and the document
stream. However, in addition to the considerable effort
required on the part of the designer, this approach will
perform poorly in dynamic environments where new agents
come up or existing agents terminate unpredictably and/or
the nature of the document stream changes.

Our objective in this paper is to propose a method for an
agent to automatically learn the “best” acquaintances on the
basis of past experiences of interaction. This method is
based on a simple reinforcement machine learning algo-
rithm, called Pursuit Learning (Thathachar & Sastry, 1985;
Mukhopadhyay & Thathachar, 1989). This algorithm is
described in greater detail in section 4.2 in a general con-
text. Its adoption to the problem of learning of acquaintan-
ces is in section 4.3.

It should be noted that in the experiments reported in this
paper we adopt the multiple opinion model described in
section 2 without any underlying economic framework.
However, the implications of using agent modeling and
acquaintance lists are strong even when an economic frame-
work is used for collaboration. This is because such agent
models can be used to determine bids, as well as to select
the winning bid.

4.2. Pursuit Learning: A Simple Reinforcement Learning
Algorithm

The paradigm of reinforcement learning assumes an
agent, with a finite number of actions, operating in a feed-
back loop with an unknown teacher and environment. At
each stage, the agent performs one of the set of actions and
receives a stochastic, qualitative reinforcement (e.g., re-
ward/penalty signal) indicating how well the agent is per-
forming. The objective of the agent is to evolve an action
strategy that maximizes its expected pay-off from the envi-
ronment.

There are numerous algorithms proposed in the rein-
forcement learning literature that differ in respect to the
environment (stationary/non-stationary, static/dynamic) and
the methods of updating the agent’s strategies (model-free/
model-based, symmetric/asymmetric). The basic learning
algorithm used in this paper is a model-based one, called
Pursuit Learning (Thathachar & Sastry, 1985; Mukho-
padhyay & Thathachar, 1989), that assumes stationary en-
vironments. This algorithm is briefly described below:

Suppose an agent with a finite number of actions per-
forms one of the set of actions and receives a reward
indicating how well it is performing. Let p � [pi] denote the
action probability vector, such that pi represents the proba-
bility with which the agent chooses action �i, initially set to
1/n. Let d � [di] denote the underlying reward probabilities
vector and d̂ is the estimate of d vector. d̂i is the estimated
probability that action �i results in a reward, which at any

instant is the running average of the reward values for each
action. The learning agent maintains and updates the p and
d̂ vectors of dimensions equal to the number of actions. �m

is the unknown optimal action (i.e., dm � maxi�1
n {di}). Si is

the number of times action �i has been tried so far. The
desired behavior is that pm should asymptotically approach
1, all other pi’s should approach zero. At instance k, choose
an action according to p. Let �(k) � �j be the action chosen.
Perform the action and receive the reinforcement �k. Then
update d̂j by

Sj�k � 1� � Sj�k� � 1

d̂j�k � 1� � �Sj�k� � d̂j�k� � �k�/�Sj�k� � 1�.

Determine vector E such that Ei(k) � 1 if d̂i(k)
� maxI�1

n {d̂l(k)}, otherwise Ei(k) � 0. After that, update p
vector by

pi�k � 1� � pi�k� � � � �Ei�k� � pi�k��.

The main idea behind the algorithm can be qualitatively
described as follows. The objective of using the action
probability vector is to provide a chance for the agent to try
all actions probabilistically. If an action is attempted suffi-
ciently often, the estimate of its reward (the corresponding
element of d̂ vector) will be sufficiently close to its true
value. This implies that the E vector will be correct (i.e., its
one element will result in the optimal action). This, in turn,
will result in the convergence of the p vector to E, and
hence, the optimal action. The convergence property of the
Pursuit Algorithm has been proved in (Thathachar & Sastry,
1985). The convergence result states that the agent’s prob-
ability of convergence to the correct optimal action can be
made as close to one as desired by choosing the step-size of
learning (�) sufficiently small.

4.3. Acquaintance Learning Using Pursuit Algorithm

In the context of learning of acquaintances in informa-
tion classification, the actions of an agent correspond to
selecting a specific agent (other than itself) as an acquain-
tance. Hence, the number of actions available to an agent is
(N � 1) when N is the number of agents in the society. The
p vector and the d̂ vector are distributed over the action set,
i.e., the set of all other agents. A learning experiment for the
agent takes place when a document arrives that requires
remote collaboration (i.e., can not be classified locally). At
that instant, the agent selects the first of its acquaintances by
sampling the p vector. The remaining acquaintances are
selected on the basis of ranking (from high to low) of the d̂
elements of the rest of the agents. The document classifi-
cation request is then sent to all the selected acquaintances.
When the remote classification results come back, the “best”
of them is selected on the basis of some criteria. In our
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study, two different criteria for choosing the “best” classi-
fication were experimented with.

(i) First Arrival: first arriving result is the “best”, i.e., the
agent that can provide the fastest result will give the
“best” classification.

(ii) Classification Quality: Since all selected remote ac-
quaintances used the same Maximin Clustering Algo-
rithm (albeit with different thesauri), as part of their
classification they compute the similarity measures. It is
assumed that in addition to the class labels, the agents
also return the similarity of the document vector with
the chosen class centroid. The remote agent that gen-
erates the largest similarity is assumed to provide the
“best” classification.

Once the “best” returned classification is determined, the
corresponding action (i.e., remote agent) of the requesting
agent is given a positive reward of �1, and all other selected
acquaintances are given penalties (a value of 0). The learn-
ing algorithm is subsequently used to update d̂ and p vec-
tors.

As the nature of documents change, different remote
agents will result in best remote classification. Hence, the d̂
vector, after convergence, achieved through the learning
algorithm will quantitatively describe the model of an
agent’s world for a given agent. That is, it will indicate the
suitability of a subset of remote agents as acquaintances.
The p vector, in turn, will converge to (i.e., point to) the best
acquaintance.

4.4. Reconfiguration of Acquaintances in Dynamic Agent
Environment

When the agent society is dynamically changing, i.e.,
when existing agents fail or leave the society, and new agent
may enter the society, there may be a need to reconfigure the
acquaintances in response to such changes. In this section,
we describe how this can be achieved for failure, leaving,
and new entry situations.

(i) Failure Situation: When an existing acquaintance of an
agent (learned by using the learning algorithm de-
scribed in section 4.2 and 4.3) fails unexpectedly, the
requesting agent has to discover this failure by itself
and determine a new acquaintance to replace the old
one. In our work, the failure was detected by a time-out
mechanism, where the requesting agent assumes the
failure of an acquaintance if it does not receive collab-
oration results from the remote agent within a given
time for a number of successive remote requests. It is
worth nothing that such failure, when correctly de-
tected, may correspond to the agent failure or a net-
work failure for the subnet containing that agent. Both
these situations are treated in a similar manner. Also
note that there is always a chance (however small) of
false detection, such as when unusually long delays are
caused by network congestion rather than network/

agent failures. However, the requesting agent, after
failure detection, quickly discovers a new acquaintance
as a replacement. Hence, the performance may not be
affected significantly.

The discovery of the new acquaintance as a replace-
ment is carried out as follows. If a failure of an agent
Aj is detected by a requesting agent in its kth iteration
of actions, the p and d̂ vectors of the requesting agent
are re-initialized. The pj and d̂j will be set to zero. For
each of other agents, the pi value will be updated as
pi(k � 1) � pi(k)/(1 � pj(k)) while d̂i keeps unchanged.
After that, the agent will come up with new acquain-
tances in the same way by sampling the p and d̂
vectors.

(ii) Agent Leaving the Society: This is a similar situation as
(i), except that the agent is leaving in an orderly man-
ner, i.e., after notifying all other agents. Hence, no
failure detection needs to be carried out. However, the
discovery of a new acquaintance requires to be carried
out, as described in situation (i).

(iii) New Entry in the Society: As in the case of voluntary
agent withdrawals, it is assumed that an agent, upon
entering the society, will notify all other agents. A
requesting agent consequently adds the agent as a
potential acquaintance. Suppose there are N agents in
the agent society, with the (N � 1)th remote agent
entering, the p and d̂ vectors of the requesting agent are
re-initialized in the following manner. The p value of
the new agent will be set to 1/(N � 1) while its d̂ value
is set to 0.5. For other agents, their p value will be their
old p value times N/(N � 1) while d̂ values are kept
unchanged. Eventually, if the new agent offers good
quality service, it has the potential to replace one of the
existing acquaintances through re-learning.

5. Experimental Results

The experiments were carried out in an Ethernet local
area network of Sun Sparc machines each running Solaris
2.3. Our test scenarios consisted of at most 30 agents, each
executing on a different machine. The 500 test documents
used for these experiments were taken from the domain of
computer science, and the performance of classification was
measured by the number of successful document classifica-
tions, average response time, and an algorithm-specific
quality measure. We chose to implement the collaborative
classification system in Java because of its portability, ob-
ject-oriented features and RMI capability. The collaborative
actions between different agents are implemented as remote
calls over the network using RMI. Java-RMI provided a
natural development environment due to its architecture
neutrality as well as its simplicity and many other factors.

When an agent starts up, it registers with a name service.
An agent requiring classification service can request from
the name service the “handles” or addresses of all the
remote agents in the agent society. We chose one specific
agent as the “requesting” agent (i.e., agent requiring classi-
fication service) and for each experiment gave it 500 local
documents to be classified.
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The classification process is as following. If the request-
ing agent fails to classify any document locally, it then
sends the document to four remote agents chosen from the
acquaintance list. Based on the results it receives from the
remote agents, the requesting agent updates the p and d̂
vectors, which influences the rank order of agents in its
acquaintance list.

Under different circumstances, users may be interested in
different aspects of document classification. Sometimes us-
ers want to get their work done as soon as possible and do
not care much about the quality of classification. On other
occasions, users may have enough time and want to get the
highest quality of service. To satisfy users’ different inter-
ests, we have two methods to give rewards to the agent’s
actions (the first arrival and the highest classification qual-
ity), as discussed in section 4.3. In sections 5.1 and 5.2, we
present experimental results involving these two criteria.
Additionally, in section 5.3 we discuss some experiments
examining agent failures.

5.1. Experiments with First Arrival as the Best Result

In these experiments with acquaintance learning using
the pursuit algorithm, the first successful classification re-
turned (again, a non-null classification is treated as a suc-
cessful one) from a remote agent is considered as the “best”
classification, and hence, the action associated with that
remote agent will get a reward of 1. All the other actions
associated with other agents in the acquaintance list will get
a reward of 0 (a penalty). The goal of this method is to find
out the acquaintances that can provide the most successful
classifications.

Using the same document set and classification task we
conducted the experiments by using four different methods
to set up the acquaintance lists: (1) The best four remote
agents (found through an off-line study) were hard-coded as
static acquaintances; (2) Acquaintances were dynamically
learned by using pursuit algorithm; (3) Acquaintances were
selected randomly from all of other remote agents any time
when a remote help was needed; and (4) The worst four
remote agents (found through an off-line study as well)
were hard-coded as static acquaintances. Out of these, the
second method represents the method proposed in the paper,
while the remaining three are for comparison purposes. The
first method is theoretically the best possible and assumes
complete knowledge on the part of each agent concerning
the agent society. Table 1 shows the number of successful

classifications achieved for the 500 documents across the
four conditions. The rows represent successful classification
by the local agent, successful classification by the remote
agents, and the total number of documents successfully
classified.

The results in Table 1 provide a clear picture of the
classification performance achieved by dynamically-learned
acquaintances based on the pursuit-learning algorithm. With
the dynamically-learned acquaintances, the agent can
achieve almost optimal performance with the difference of
only 16 documents to the acquaintances of the best four
remote agents. Compared with the acquaintances of four
random remote agents and the four worst agents, the number
of remote classifications with dynamically-learned acquain-
tances increased about 39% and 363% respectively in terms
of number of successful classifications. Therefore, the dy-
namically-learned acquaintances could provide very good
performance in terms of number of successful classifica-
tions when it is designed to give responses to the user as fast
as possible.

5.2. Experiments with Classification Quality

In the experiments reported in this subsection, an algo-
rithm-specific similarity value (see section 2.2) was taken as
the classification quality measure. In this case, a user wants
to achieve the highest quality of classifications, and not
merely the first available classification. In such a case, the
requesting agent would wait for returned results from all of
the remote agents that the document had been sent to. After
receiving all of the returned results, the requesting agent
would select the classification with the largest value of
similarity and present it to the user. Hence, only the action
that led to the largest similarity of remote classification
would get a reward, which is equal to the value of similarity
(a real number between 0 and 1). Other remote agents in the
same acquaintance list would get a penalty (a value of 0).
The goal of this method is to find out the acquaintances that
can provide the best quality of classifications.

Similar to the experiments in section 5.1, we did the
experiments by using four different methods to set up the
acquaintance lists. The only difference was that the request-
ing agent waited for all of the returned results and selected
the classification with the largest similarity value as the best
result instead of the first returned one. The classification
performance is measured as the average similarity over the
complete set of 500 documents. Table 2 shows the average
similarity of over the complete document set achieved under
four different conditions.

TABLE 1. Number of successful classifications with first arrival as the
best result.

Acquaintances Best four
Pursuit
learning

Random
four

Worst
four

Local classifications 177 177 177 177
Remote classifications 229 213 153 46
Total classifications 406 390 330 223

TABLE 2. Average classification similarity of 500 documents achieved
under four conditions.

Acquaintances Best four
Pursuit
learning

Random
four

Worst
four

Average similarity 0.491 0.461 0.360 0.216
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From Table 2 we can see the significance of acquain-
tance learning using pursuit learning in achieving high
quality of classifications. With dynamically-learned ac-
quaintances, the agent can achieve 94% of optimal perfor-
mance. Compared with the acquaintances of random four
agents and the worst four agents, the average similarity with
dynamically learned acquaintances increased about 28%
and 113% respectively.

5.3. Experiments with Agent Failures

We performed a preliminary study examining the perfor-
mance without the reconfiguration of acquaintances in sit-
uations involving agent failures. If a remote agent failed, it
would never return any results so that its corresponding p
and d̂ values would never be updated and will remain
unchanged. The requesting agent may continue sending the
documents to the failed agent and hence, the performance
will be degraded. With reconfiguration of acquaintances in
a dynamic agent environment, the requesting agent can
detect the remote agent failure or be notified of agent
leaving and entering the agent society. Hence, it can update
its p and d̂ vectors and discover new acquaintances, as
described in Section 4.4.

We conducted a few experiments to test the stability and
performance of reconfiguration of acquaintances by inten-
tionally eliminating some agents from the acquaintance list
during the execution period. We found that after eliminating
one agent from the four acquaintances of a requesting agent,
the requesting agent could detect the failure after sending it
3 or 4 more documents. Eventually the requesting agent
updated the p and d̂ vectors and reconfigured the acquain-
tance list. We could not discern much difference in terms of
average classification similarity over the test document set
after eliminating one or two agents from acquaintances. In
fact after eliminating three agents from the acquaintance list
and successfully re-learning three new acquaintances, we
obtained an average similarity of 0.438 for total 500 docu-
ments, which is very close to the value of average similarity
without any failure of agents (0.461).

6. Conclusions and Future Work

In this paper we have presented a method for automati-
cally discovering preferred acquaintance agents in a society
of information agents involved in collaborative information
classification. Such a selective interaction with the agents in
an acquaintance list provides a powerful mechanism for
scaling up agent societies to include a large number of
agents. It considerably reduces the response delays and
communication overhead associated with an exhaustive in-
teraction with all agents. At the same time, it provides near
optimal performance which compares favorably with that
obtained with exhaustive interaction. The learning algo-
rithm, used here to discover the best acquaintances based on
past interaction experiences, is simple and efficient, and
provides a model of the entire agent population as a by-

product. We have also presented a method of reconfiguring
the learning of acquaintances in the presence of dynamic
changes in the agent society (e.g., an existing agent leaving
the society voluntarily or involuntarily, as well as new
agents joining the society). Experiments were performed
with classification of documents from the domain of Com-
puter Science by means of a large-scale society of classifier
agents, implemented using the JAVA-RMI environment.
These experimental studies indicate that the method is both
practical and efficient.

The model of the agent society, as explained earlier, is a
simple one, where a real number (between 0 and 1) is
learned for each remote agent, indicating the latter’s quality
of service for the entire document stream. A possible direc-
tion of future work is to study the advantages of using more
complex agent models. In particular, agents may be as-
sumed to offer a different quality of service for different
kinds of information. This requires determining a high-level
abstract representation of the nature of the documents (e.g.,
the domain they belong to), and modeling a remote agent’s
quality of service as a mapping from this representation.
However, even with such complex agent models, the basic
approach of discovering acquaintances on-line based on
past performance remains valid.

Although the motivation of learning an acquaintance list
is provided in the context of an agent society involved in
information classification, it is clear that the problem (and,
the solution method) is general, and can be applied to any
large-scale agent society where exhaustive interaction needs
to be avoided. All it requires is a suitable manner of char-
acterizing the quality of service provided by remote agents
in the context of the specific task they are solving. As such,
we believe that learning good acquaintances is a necessary
mechanism to develop large-scale, open, and distributed
agent societies.

Acknowledgment

The authors were supported by the Digital Library Ini-
tiative Phase II. This is a joint program by multiple agen-
cies: NSF, DARPA, NASA, NLM, LoC, FBI, NARA, SI,
and IMLS.

References

Baker, A.D. (1996). Market-based control, Chapter 8—Metaphor or real-
ity: a case study where agents bid with actual costs to schedule a factory,
pages 184–223. World Scientific, River Edge, NJ.

Communications of the ACM. (1994). Special issue on intelligent agents.
vol 37, 7.

Decker, K., & Lesser, V. (1995). Macron: an architecture for multi-agent
cooperative information gathering. Proceedings of CIKM Conference,
Workshop on Intelligent Information Agents, Baltimore, MD.

Delgado, J., Ishii, N., & Ura, T. (1998). Intelligent collaborative informa-
tion retrieval. Progress in Artificial Intelligence, IBERAMIA’98.

Durfee, E.H., & Montogomery, T.A. (1989). Mice: a flexible testbed for
intelligent coordination experiments. Proceedings of the 1989 Distrib-
uted Artificial Intelligence Workshop, pp. 25–40.

974 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2003

 15322890, 2003, 10, D
ow

nloaded from
 https://asistdl.onlinelibrary.w

iley.com
/doi/10.1002/asi.10292 by U

niversity O
f T

oronto L
ibrarie, W

iley O
nline L

ibrary on [16/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Ferguson, I.A., & Karakoulas, G.J. (1996). Multiagent learning and adap-
tation in an information filtering market. In Proceedings AAAI Spring
Symposium on Adaptation, Co-evolution and Learning in Multiagent
Systems, (pp. 28–32), Menlo Park, CA.

Karakoulas, G.J., & Ferguson, I.A. (1995). A computational market for
information filtering in multi-dimensional spaces. In Proceedings AAAI
Fall Symposium on AI Applications in Knowledge Navigation and
Retrieval, (pp 78–83), Menlo Park, CA.

Mostafa, J., Mukhopadhyay, S., Lam, W., & Palakal, M. (1997). A multi-
level approach to intelligent information filtering: model, system, and
evaluation. ACM Transactions on Information Systems, 15, 368–399.

Moukas, A. (1996). Amalthaea: information discovery and filtering using
a multi-agent evolving ecosystem. In Proceedings of the Conference on
the Practical Application of Intelligent Agents and Multi-agent Tech-
nology, (pp. 177–186), London, UK.

Mukhopadhyay, S., & Thathachar, M. (1989). Associative learning of
boolean functions. IEEE Transactions on Systems, Man and Cybernet-
ics, 19, 1008–1015.

Raje, R., Mukhopadhyay, S., Boyles, M., Papiez, A., & Mostafa, J.
(1997a). An economic framework for a web-based collaborative infor-
mation classifier. Proceedings of the International Association of Sci-
ence and Technology for Development SE’97 Conference, (pp. 362–
366).

Raje, R., Mukhopadhyay, S., Boyles, M., Patel, N., & Mostafa, J. (1997b).
D-SIFTER: a collaborative information classifier. Proceedings of the
International Conference on Information, Communications, & Signal
Processing, (pp. 820–824).

Raje, R., Mukhopadhyay, S., Qiao, M., Palakal, M., & Mostafa, J. (2000).
Experiments with a distributed information filtering system. Proceedings
of the 4th World Multi-conference on Systems, Cybernetics and Infor-
matics, SCI-2000 (pp. 591–596).

Salampasis, M. (1995). An agent-based hypermedia model [On-line].
http://osiris.sund.ac.up/cs0msa/hyp30100.htm.

Salton, G. (1988). Automatic text processing. New York: Addison-Wesley.
Sycara, K., & Zeng, D. (1996). Coordination of multiple intelligent soft-

ware agents. International Journal of Cooperative Information Systems,
5, 181–211.

Sycara, K., Decker, K., Pannu, A., Williamson, M., & Zeng, D. (1996).
Distributed intelligent agents. IEEE Expert, 11(6), 36–46.

Thathachar, M., & Sastry, P. A new approach to the design of reinforce-
ment schemes for learning automata. (1985). IEEE Transactions on
Systems, Man, and Cybernetics, 15, 168–175.

Tou, J., & Gonzalez, R. (1974). Pattern Recognition Principles. New York:
Addison-Wesley.

Appendix A. Qualitative Explanation of the
Method (Pursuit Learning) Described in
Section 4.2

This method determines the optimal action from a set of
actions based on repeated trials and the outcomes of those
trials. It maintains an action probability vector (denoted p,
where pi is the probability of choosing the ith action).
Initially, all elements of the p vector have values equal to
1/n, where n is the number of actions, since nothing is
known as to which action is good or bad. An action is
probabilistically chosen according to the action probabili-
ties, and is performed. The outcome of that action is a
reward (denoted �k) which denotes how good the action is.
On the basis of the measured outcome, an estimated reward
vector (denoted d̂, where d̂j is the estimated reward for the

jth action) is updated. The unit vector E captures the current
estimate of the “optimal” action based on the d̂ vector. The
element of E that corresponds to the maximum element of d̂,
has a value of 1, and all other elements of E have zero
values. The updating of the action probability vector p is
carried out in such a way that it is moved by a small step
towards the current E vector. As this process is carried out
a large number of times, the p vector eventually converges
to the optimal action, i.e., the element corresponding to the
optimal action will converge to a value 1, and all other
elements converge to a value 0. This probabilistic action
selection and updating ensure that all actions are tried
sufficiently often and the optimal action is discovered dur-
ing operation. In the context of this paper, the actions
correspond to all other agents who are potential acquaintan-
ces, and the optimal action correspond to the best perform-
ing acquaintance, discovered during operation.

Appendix B. Non-Technical Explanation of Some
Technical Terms

Agent: An intelligent computer program that provides a
service to a human user, possibly by means of collaboration
with other remote agents.

Acquaintance: A remote agent, discovered through in-
teraction, that has provided high-quality service in the past.

Thesaurus: A linear list of terms with synonym structure
to describe a domain for which an agent is designed.

Document Representation: Conversion of a free-text
document to a numeric or other form that can be manipu-
lated in the computer.

Clustering: A grouping of items based on some similar-
ity measure.

Unsupervised Learning: Discovery of good decisions by
means of similarities, and not based on explicit human-
provided training data.

Centroid: A representative document for a document
category.

Time-out: The amount of time an agent will wait for
result after requesting classification service from a remote
agent. Without a maximum limit to such waiting time, an
agent may wait forever if a remote agent has been de-
activated or has failed.

Reinforcement Learning: A trial-and-error method of
discovering the best action, based on experiences of out-
comes of the trials.

Local Classifications: Those document classifications
that could be performed locally by an agent for its user.

Remote Classifications: Those document classifications
that are performed by a remote agent on the request of the
local agent.

JAVA-RMI: Remote Method Invocation utilities for in-
voking remote computer programs in the JAVA computer
programming language.
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