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Abstract

This paper presents a hybrid approach to identifying protein names in biomedical texts, which is regarded as a crucial

step for text mining. Our approach employs a set of simple heuristics for initial detection of protein names and uses a

probabilistic model for locating complete protein names. In addition, a protein name dictionary is complementarily

consulted. In contrast to previously proposed methods, our proposed method avoids the use of natural language

processing tools such as part-of-speech taggers and syntactic parsers and solely relies on surface clues, so as to reduce

the processing overhead. Moreover, we propose a framework to automatically create a large-scale corpus annotated

with protein names, which can be then used for training our probabilistic model. We implemented a protein name

identification system, named PROTEXROTEX, based on our proposed method and evaluated it by comparing with a system

developed by other researchers on a common test set. The experiments showed that the automatically constructed

corpus is equally useful in training as compared with manually annotated corpora and that effective performance can be

achieved in identifying compound protein names with PROTEXROTEX.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Reflecting the ever-growing digitized publications, enormous efforts have been made for automatically

discovering novel information from texts, i.e., text mining. The popularity of text mining techniques

is reflected in the large number of publications on this topic found in established forums such as ACM SIG

on Knowledge Discovery in Data and Data Mining (KDD) (Zaki, Wang, & Toivonen, 2003) and IEEE

International Conference on Data Mining (ICDM) (Cercone, Lin, & Wu, 2001).

Text mining is crucial also in the field of cellular and molecular biology because of a strong demand for

discovering molecular pathways, protein–protein interactions, and so on in the literature, which are even
for human experts, labor-intensive and time-consuming. Therefore, much research has been conducted to
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explore text mining techniques on biomedical texts (Adamic, Wilkinson, Huberman, & Adar, 2002;

Friedman, Kra, Yu, Krauthammer, & Rzhetsky, 2001; Fu, Mostafa, & Seki, 2003; Hirschman, Park, Tsujii,

Wong, & Wu, 2002; Ng & Wong, 1999; Palakal, Stephens, Mukhopadhyay, Raje, & Rhodes, 2002; Proux,

Rechenmann, & Julliard, 1998; Sekimizu, Park, & Tsujii, 1998; Thomas, Milward, Ouzounis, Pulman, &
Carroll, 2000).

Our ultimate goal is to realize an automated system to mine novel information from the biomedical

literature; specifically, we aim to develop a system to identify relations and interactions between proteins

and cancer, that are expected to facilitate the development of new drugs and treatments peculiar to cancer.

To accomplish our goal, we start with identifying protein names appearing in biomedical texts. This task

can be considered as named-entity recognition partly explored in Message Understanding Conferences

(MUCs) (Grishman & Sundheim, 1996), in which proper nouns, such as names of people and companies,

locations, and time expressions appearing in newspaper articles were targeted for automatic recognition.
The most successful system achieved the F -score of 93.4% (Marsh & Perzanowski, 1998) and the task, in

this particular domain, could be seen as a solved problem.

However, identifying protein names is still an open question. This is partially because there are no

common standards or fixed nomenclatures for protein names that are followed in practice (Bruijn &

Martin, 2002). As new proteins continue to be discovered and named, predefined protein name dictionaries

are not necessarily helpful in identifying new protein names. Additionally, protein names frequently appear

in shortened, abbreviated, or slightly altered forms (e.g., the use of capital and small letters and hyphens is

often inconsistent). Therefore, even the protein names that are already known and are to be included in a
dictionary might be overlooked due to the way they are actually written. Another challenging issue in

identifying protein names is to find their name boundaries. According to our preliminary research on 99

MEDLINE abstracts (obtained at Proteinhalt i text project Web page (Franz�en, 2003)), 42% of protein

names are composed of multiple tokens (i.e., compound names), and these tokens include symbols, com-

mon nouns, adjectives, adverbs, and even conjunctions, which makes it difficult to distinguish protein

names from the surrounding texts (Tanabe & Wilbur, 2002).

Motivated by the above background, we explore a method to identify protein names in biomedical texts

with an emphasis on finding compound names. As a final model, we propose a hybrid method taking
advantage of hand-crafted rules, probabilistic models, and a protein name dictionary as a complementary

means. In addition, we propose a framework to train probabilistic models on an automatically constructed

large-scale corpus, where manually annotated corpora are no longer needed for training.

The rest of this paper is structured as follows: Section 2 summarizes past research related to protein

name identification. Section 3 explains our proposed approach in detail. In Section 4, the methodology of

evaluation is described and the result is presented and discussed. Lastly, Sections 5 and 6 conclude this

paper with our findings and future directions.
2. Related work

There have been several attempts to develop techniques to identify protein names in biomedical texts.

They roughly fall into three approaches, that is, dictionary-based, heuristic rule-based, and statistical.

An approach based exclusively on a dictionary is not necessarily helpful for identifying protein names

because new protein names continue to be created and there are often many variations in the way identical

proteins are referred to. To tackle this problem, Krauthammer, Rzhetsky, Morozov, and Friedman (2001)

proposed an approach to protein and gene name identification, using BLAST (Altschul et al., 1997), a

DNA and protein sequence comparison tool. Their basic idea involves performing approximate string

matching after converting both dictionary entries and input texts into nucleotide sequence-like strings,
which can be then compared by BLAST. For evaluation, they extracted gene and protein names from
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GenBank (Benson, Karsch-Mizrachi, Lipman, Ostell, & Wheeler, 2003) to create a name dictionary,

converted them to nucleotide sequence-like strings according to a predefined conversion table, and applied

their method to a review article, which is manually annotated with 1162 gene and protein names by biology

experts. They reported that 409 names out of 1162 names (35.2%) were not contained in the dictionary and,
among them, 181 (44.3%) were fully or partially identified by their proposed method.

Fukuda, Tsunoda, Tamura, and Takagi (1998), Franz�en, Eriksson, Olsson, Asker, and Lid�en (2002),

and Narayanaswamy, Ravikumar, and Shanker (2003) proposed rule-based approaches. They exploited

surface clues for detecting protein name fragments (i.e., parts of protein names) and used a part-of-speech

tagger and/or a syntactic parser for finding protein name boundaries. Typically, the surface clues include

the following features, where bold characters indicate the corresponding examples.

• Capital letters (e.g., ADA, CMS).
• Arabic numerals (e.g., ATF-2, CIN85).

• Roman alphabets (e.g., Fc alpha receptor, 17beta-estradiol dehydrogenase).

• Roman numerals (e.g., dipeptidylpeptidase IV, factor XIII).

• Words appearing frequently in protein names (e.g., myelin basic protein, PI 3-kinase, nerve growth factor).

Franz�en et al. (2002) conducted experiments that compared their system (Yapex) with Fukuda’s system

(Kex) on 101 MEDLINE abstracts. Yapex achieved a recall of 61.0% and a precision of 62.0% as compared

to a recall of 37.5% and a precision of 34.3% on Kex in terms of exact match. Incidentally, Narayanaswamy
et al. (2003) reported to have achieved a recall of 69.1% and a precision of 96.9% on 55 MEDLINE ab-

stracts, where the precision is much higher than both Yapex and Kex. However, they cannot be directly

compared since Narayanaswamy et al. targeted both protein and gene names (where detected names are

regarded as correct if they are either gene or protein names), while Yapex and Kex focused specifically on

protein names, and their test data are different.

Statistical approach has made a considerable impact on natural language processing (NLP) research and

related areas, such as part-of-speech (POS) tagging, parsing, and speech recognition. In the bioinformatics

domain, for example, Collier, Nobata, and Tsujii (2000), Nobata, Collier, and Tsujii (1999), and Kazama,
Makino, Ohta, and Tsujii (2002) applied statistical methods (e.g., hidden Markov models, decision trees,

and support vector machines) for detecting and classifying gene and gene product names including proteins.

The features used in their methods are mostly the same as those used in rule-based approaches, that is,

surface clues and parts of speech.

Comparing rule-based and statistical approaches, rule-based approaches have an advantage in a sense

that rules can be flexibly defined and extended as needed, but manually analyzing targeted domain texts and

crafting rules are often time-consuming. Statistical approaches are relatively easy to apply if appropriate

models and training data are given. However, creating training data (i.e., corpora annotated with protein
names in this case) requires domain experts and is also time-consuming, and an insufficient amount of

training data leads to the data sparseness problem. In general, to achieve higher performance, more

complex, elaborated models are desirable, which usually require more training data in order to reasonably

estimate the increasing number of parameters.

Rule-based and statistical approaches are, of course, not necessarily exclusive. For instance, Tanabe and

Wilbur (2002) proposed a method for identifying gene (and protein names) using both heuristic and statistic

strategies. They introduced a new (pseudo) POS tag indicating gene names and trained a rule-based POS

tagger on a corpus manually annotated with gene names using the new tag. They used the Brill tagger (Brill,
1994), which does error-driven learning to induce rules for tagging parts of speech. After training on gene

names, the tagger can be used for identifying potential gene names as if they are one of parts of speech. The

initial result is then filtered to remove misdetected candidates and to identify overlooked names using

manually created rules. Lastly, a na€ıve Bayes classifier is applied to predict the likelihood that each input
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document does contain gene names. Their experiments demonstrated that higher performance can be

achieved for gene/protein name identification on the documents with higher Bayesian scores.

Although there have been much research on protein name identification as shown above, there are no

common data set or standard evaluation criteria by which different methods can be fairly compared. To
advance the techniques of protein name identification, it is important to have common basis for comparing

results as attempted in MUCs (Grishman & Sundheim, 1996). As for data set, there are a few annotated

corpora publicly available. One is the GENIA corpus (Ohta, Tateisi, Kim, Mima, & Tsujii, 2002), which

consists of 2000 MEDLINE abstracts (version 3.01) and has been annotated with not only proteins but a

subset of the substances and the biological locations involved in reactions of proteins. Another corpus was

made by the Proteinhalt i text (protein concentration in text) project (Franz�en, 2003), which is composed of

200 MEDLINE abstracts and was manually annotated with protein names. As for evaluation criteria,

Olsson, Eriksson, Franz�en, Asker, and Lid�en (2002) proposed four criteria to assess the performance of
protein name identification, which are explained in Section 4 in more detail.

It should be also noted that, in order to provide a common data set and evaluation criteria to compare

different approaches, there is an ongoing project, called BioCreAtIvE (Critical Assessment of Information

Extraction systems in Biology) (Hirschman & Blaschke, 2003). The tasks of the project include gene/protein

name identification, where each research group independently develops their method to automatically

identify gene/protein names, and their results are to be evaluated on a common test set and evaluation

criteria. A workshop reporting the results will be held in Spring 2004. 1

In this paper, we propose a hybrid approach utilizing heuristic rules for initial detection of protein name
fragments and a probabilistic model focusing on determining name boundaries. In addition, a protein name

dictionary is complementarily consulted. The rules used are simple and easy to develop and the probabi-

listic model incorporates word classes based on suffixes and word structure, so as to overcome the data

sparseness problem. For evaluation, we use the data set produced by the Proteinhalt i text project and their

proposed evaluation criteria, which enables us to directly compare our method with the previous work

conducted by Franz�en et al. (2002).
3. Our proposed method

3.1. Overview

Fig. 1 depicts the framework of our proposed method to be described in this section.
Before entering in protein name identification processes, an input text is first partitioned into sentences

and then tokenized, where tokens are defined as words and symbols. For instance, PI 3-kinase will be

separated into four tokens, i.e., PI, 3, –, and kinase. Then, we identify protein names through three steps

shown in Fig. 1. Firstly, fragments of protein names are detected by a set of heuristic rules relying on

surface clues which are commonly used for protein name identification. Secondly, because the detected

fragments does not usually form complete protein names, their name boundaries are expanded/determined

based on either a set of rules or a probabilistic model so as to locate complete protein name candidates. In

the case where a probabilistic model is used, a filter is then applied to the protein name candidates to rule
out unlikely candidates. 2 Lastly, a protein name dictionary is consulted to detect the protein names that

are not recognized by the previous steps. Each step is explained in Sections 3.2–3.4 in greater details.
1 At the time of writing this paper on October 2003.
2 The filter can also be applied in the case where rules are used for the name boundary expansion step, but we consider the filter as a

part of a probabilistic framework described later and limit the use of the filter for an evaluation purpose.
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Fig. 1. Framework of our proposed method for protein name identification.
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3.2. Protein name fragment detection

To detect protein name fragments, we use several heuristic rules which were derived from previous

studies (Franz�en et al., 2002; Fukuda et al., 1998; Narayanaswamy et al., 2003) and our preliminary

observation on 99 MEDLINE abstracts (Seki & Mostafa, 2003). These abstracts were manually annotated

with 1745 protein names by Proteinhalt i text project (Franz�en, 2003) and were used as a reference corpus

for developing the Yapex protein name tagger (see Section 2).

Words satisfying any of the following conditions are detected as potential protein name fragments.

• Words that include capital letter(s).

• Words that include combinations of Arabic numerals and lower case letters (e.g., p35, cdk5).

• Words with suffixes that often appear in protein name fragments (-nogen, -ase, and -in are considered in

this study).

• Words that often appear as protein name fragments (factor(s) and receptor(s) are considered in this

study).
• Roman alphabets that often appear as protein name fragments (alpha, beta, gamma, delta, epsilon, and

kappa are considered in this study).

These conditions unfortunately also detect words that are not protein name fragments. For example, if

we extract all words containing capital letters, words located in the beginning of sentences will be inevitably

extracted as protein name fragments. To decrease these errors, we exclude the following.

• Words with a capital letter in the beginning followed by more than three lower case letters (e.g., Accord-

ing, Basically).

• Words composed of only capital letters longer than six characters (e.g., KTPGKKKKGK).

• Only one character (e.g., A, B, C,. . .).
• Measuring units: nM, mM, pH, and MHz (predefined based on the reference corpus).

• Chemical formulas: CaCl2, NH2, Ca2, HCl, and Mg2 (predefined based on the reference corpus).

• Words included in a stopword list. In this study, we used the PubMed Stopword List, 3 which contains
133 function words.

Henceforth we call the set of rules described above the ‘‘detection rules.’’
3
http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html

http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html


728 K. Seki, J. Mostafa / Information Processing and Management 41 (2005) 723–743
3.3. Protein name boundary expansion

Since the detection rules detect only protein name fragments in principle, the name boundaries of the

detected protein name fragments need to be expanded so as to identify complete protein names. For this
purpose, we explore the use of heuristic rules and a probabilistic model. The heuristics were

derived from our preliminary observation on the reference corpus (99 MEDLINE abstracts) as used in

Section 3.2.

Previous work (Franz�en et al., 2002; Fukuda et al., 1998; Nobata et al., 1999) typically made use of POS

taggers and/or syntactic parsers for the purpose of determining protein name boundaries, assuming that

POS tags and/or noun phrases are good indicators for protein name boundaries. However, according to our

preliminary investigation on the reference corpus, protein name fragments can be symbols, nouns, adjec-

tives, adverbs, verbs, and conjunctions; thus, POS tags may not be very informative for the purpose of
detecting protein names and their name boundaries. Therefore, our method, unlike previous work, avoids

the use of those NLP tools, which results in reducing both processing overhead and the potential number of

probabilistic parameters to estimate.
3.3.1. Heuristics

The words and symbols matching the conditions described below are regarded as parts of pro-

tein names, and the protein name boundaries are expanded so as to include the matching words or

symbols.

The following are the conditions of rules that expand name boundaries rightward, where italic characters

denote the protein name fragments detected by the detection rules, and the bold characters denote the

expanded parts.

• A hyphen (optional) plus a numeral or capital letters less than three characters (e.g., ATF-2).

• A capital letter in parentheses (e.g., Ruk (I)).

The conditions of the rules that expand name boundaries leftward are shown below. Words shown in
parentheses as instances of frequent words/suffixes are the complete sets considered in these rules.

• A numeral or capital letters less than three characters and optionally a hyphen (e.g., N-glycanase).

• In the case where the protein name fragment detected by the detection rules has a suffix ‘‘-in’’ (e.g. pro-

tein):
� frequent words (binding, related, associated) preceded by a hyphen plus any words (e.g., parathyroid

hormone-related protein).

• In the case where the protein name fragment detected by the detection rules has a suffix ‘‘-ase’’ (e.g., ki-

nase):

� frequent suffixes (-ine, -tide, -yl) optionally followed by a hyphen and numerals (e.g., tyrosine kinase),

� frequent suffixes (-one, -sitol) optionally followed by capital letters and a hyphen (e.g., glutathione

S-transferase).

Finally, the following name fragments that were detected but not expanded by the above rules are

discarded, as they are unlikely to be protein names without any qualifiers.

• Protein, -ase, receptor(s), factor(s), alpha, beta, gamma, delta, epsilon, kappa, I, II, III.

Henceforth we call the set of rules described above the ‘‘expansion rules.’’
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3.3.2. Probabilistic models

The creation of the expansion rules is a human process and it is based on close study of the reference

corpus. Hence, certain degree of arbitrariness cannot be avoided. We introduce an alternative approach

based on a probabilistic model to learn word collocation patterns without human intervention. Below, we
will explain the details of our model with an example context of ‘‘. . .with dipeptidyl peptidase IV

promoter constructs. . .’’, where ‘‘dipeptidyl peptidase IV’’ is the actual protein name and

‘‘peptidase’’ and ‘‘IV’’ are to be detected by the detection rules.

First, we will look at the process to expand name boundaries leftward. Let wi denote one of the protein

name fragments detected in the previous initial detection step. Given a fragment wi, the probability that a

token wi�1 immediately preceding wi is also a protein name fragment can be expressed as a conditional

probability Ppðwi�1jwiÞ, assuming a first-order Markov process. Likewise, the probability that wi�1 is not a

protein name fragment can be expressed as Pnðwi�1jwiÞ. For the above example, dipeptidyl and pep-

tidase correspond to wi�1 and wi, respectively. (Notice that IV will not be wi since peptidase, the left

side of IV, is already known (detected) as a protein name fragment.) Thus, we estimate the probabilities Pp
(dipeptidyl|peptidase) and Pn (dipeptidyl|peptidase).

Based on these probability estimates, we decide whether to expand protein name boundaries. In the case

where there is no name boundary between wi�1 and wi (i.e., wi�1 is also a protein name fragment),

Ppðwi�1jwiÞ is expected to be greater than Pnðwi�1jwiÞ. Thus, we regard wi�1 as a protein name fragment if the

following condition holds:
Table

Examp

Clas

suffi

suffi

word

acro

arab

rom

rom

punc

sym
Ppðwi�1jwiÞ > Pnðwi�1jwiÞ ð1Þ
However, estimating these probabilistic parameters will require a large amount of training texts anno-

tated with protein names, which are expensive to create. To make matters worse, simply using a large-scale

corpus cannot be a substantial solution due to the characteristics of protein names: new protein names

continue to be created. Previously unseen data could be fatal for probability estimation such as maximum

likelihood estimation.
To remedy the data sparseness problem, we generalize words (tokens) to word classes. Table 1 shows

some examples. They are automatically and uniquely assigned to each word according to the algorithm

presented as a pseudo code in Fig. 2.

The algorithm determines a unique word class for each word as follows. Given an input word w, it first
checks whether w is included in the predefined set of Roman alphabets, Roman numerals, or punctuations;

whether it is a number; or whether it contains one or more capital letters. If so, its corresponding word class

is assigned. If not, it then looks at the characters composing w. In the case where w is composed of

alphabets, either ‘‘word’’ or one of ‘‘suffix’’ classes is assigned, which is described in more detail next.
Otherwise, class ‘‘symbol’’ is given.
1

les of word classes

s Examples

x_in protein, oncoprotein, lactoferrin

x_ase kinase, transferase, peptidase

the, a, an

nym CN, TrkA, USF

ic_num 2, 3, 18, 76

an_num I, II, III, IV

an_alpha alpha, beta, gamma

tuation comma (,), period (.)

bol ), (, %, +



Fig. 2. The algorithm of word class assignment.
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For word w, its suffix class (e.g., suffix_in and suffix_ase) is dynamically generated by extracting a se-

quence of a vowel, one or more consonants (if any), and either a vowel or a consonant from the ending of

w. However, class ‘‘word’’ will be assigned in cases where the suffix was not extracted (i.e., sw ¼ NULL) or

the resulting suffix is longer than the remainder of the word in length. For example, given an input

‘‘peptidase’’, it takes ‘‘a’’ as a vowel, ‘‘s’’ as one or more consonants, and ‘‘e’’ as a vowel or a con-

sonant, forming a suffix ‘‘ase’’. For another example, suppose ‘‘case’’ as input. In this case, again ‘‘ase’’

will be extracted as its suffix. However, because the length of ‘‘ase’’ (¼ 3) is longer than that of the

remainder ‘‘c’’ (¼ 1), the suffix will be rejected and class ‘‘word’’ will be assigned.
Integrating the word classes to the probabilistic models, we formalize the bigram class models as in

Eq. (2), where ci denotes the word class of wi. The probabilities initially presented are now defined as a

product of class–class and class–word transitional probabilities.
Ppðwi�1jwiÞ ¼ Ppðwi�1jci�1Þ � Ppðci�1jciÞ
Pnðwi�1jwiÞ ¼ Pnðwi�1jci�1Þ � Pnðci�1jciÞ

ð2Þ
For our example, these are:
PpðdipeptidyljpeptidaseÞ ¼ Ppðdipeptidyljsuffix ylÞ � Ppðsuffix yljsuffix aseÞ
PnðdipeptidyljpeptidaseÞ ¼ Pnðdipeptidyljsuffix ylÞ � Pnðsuffix yljsuffix aseÞ

ð3Þ
The probabilistic parameters can be estimated based on corpora annotated with protein names. However,

the models still contain raw words wi�1, which may cause the data sparseness problem. To cope with it, we

make use of a smoothing method in estimating the transitional probabilities. Preliminarily, we compared

Good–Turing estimation (Good, 1953) and Witten–Bell smoothing (Witten & Bell, 1991). Briefly, the
former estimates the probabilities based on adjusted word frequencies assuming that their distribution is
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binomial, and the latter estimates the probabilities by considering how often a class in question has new

words (which is assumed to be the number of words associated with the class). For this study, we utilize the

Witten–Bell smoothing method, which found to perform better on the reference corpus. Eq. (4) shows the

definition of Witten–Bell smoothing (for this particular model) to estimate a transitional probability from
class c to word w:
PWBðwjcÞ ¼

F ðw; cÞ
F ðcÞ þ T ðcÞ if F ðw; cÞ > 0

T ðcÞ
F ðcÞ þ T ðcÞ otherwise

8>><
>>:

ð4Þ
where F ðxÞ denotes a frequency of x, and T ðcÞ denotes the number of word types which belong to class c.
Likewise, we adopt the model described above to expand/determine protein name boundaries rightward

as well. The probability functions are formalized as in Eq. (5), where wiþ1 and ciþ1 denote the token

immediately following the detected protein name fragment wi and its word class, respectively.
Ppðwiþ1jwiÞ ¼ Ppðwiþ1jciþ1Þ � Ppðciþ1jciÞ
Pnðwiþ1jwiÞ ¼ Pnðwiþ1jciþ1Þ � Pnðciþ1jciÞ

ð5Þ
For each of the protein name fragments detected by the heuristic rules described in Section 3.2, we

compute the probabilities above to determine whether to expand their name boundaries. When expanded,

the probabilistic models are iteratively applied to the expanded fragments to further expand name

boundaries as long as the condition in Eq. (1) holds. For our example,
PpðdipeptidyljpeptidaseÞ ¼ Ppðdipeptidyljsuffix ylÞ � Ppðsuffix yljsuffix aseÞ
¼ 0:02912594	 0:05825189

¼ 0:00169664

PnðdipeptidyljpeptidaseÞ ¼ Pnðdipeptidyljsuffix ylÞ � Pnðsuffix yljsuffix aseÞ
¼ 0:00040621	 0

¼ 0

ð6Þ
Because Pp > Pn for this word collocation, ‘‘dipeptidyl’’ is also regarded as a protein name fragment.
Then, the window will move one word leftward and the same procedure is applied so as to determine

whether to include the preceding word (i.e., with) as a part of the protein name.
3.4. Filtering

Our ultimate goal is to automatically discover novel information associated with proteins and cancer
from the literature, where protein name identification is a fundamental factor whose performance will

strongly influence the following processes. Although high recall and high precision are ideal, generally there

is a trade-off between them. In this context, it is desirable if we could arbitrarily choose which metric is (and

how much it is) preferred in the output of protein name identification (e.g., high recall with low precision,

high precision with low recall, or balanced) depending on reliability of the information we are seeking. This

can be done by restricting the system output based on some certainty measure that indicates the extent to

which the detected protein names are likely to be actual protein names.

We are currently using certainty score Cð�Þ defined as in Eq. (7), where w1 . . .wn denotes a sequence of
tokens detected as a protein name, and F ðwiÞ and FpðwiÞ denote a frequency of wi in training data and a

frequency of wi which appears as a protein name fragment, respectively.
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Examp

Acr

acro

acro

acro

acro
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Cðw1 . . .wnÞ ¼
1

n

Xn

i¼1

PcðwiÞ

where PcðwiÞ ¼

FpðwiÞ
F ðwiÞ

if F ðwiÞP 3

FpðciÞ
F ðciÞ

otherwise

8>>><
>>>:

ð7Þ
PcðwiÞ is a probability that word wi is a protein name fragment, and Cðw1 . . .wnÞ is an average of all

probabilities associated with w1 to wn. Probability PcðwiÞ will take a greater value in the case where a token

wi is predominantly used as a protein name fragment in training data since FpðwiÞ approaches to F ðwiÞ. In
the case where the frequency of wi is small, instead we use the frequency of its word class because low

frequent data are statistically less reliable. We set the cutoff to 3.

The word classes used in computing the certainty score are the same as those used in protein name

boundary expansion described in Fig. 2 except for acronyms. As our preliminary experiment showed that

more specific word classes for acronyms produced slightly better results on the reference corpus, we
introduce new word classes (only for acronyms) as follows. First, given an acronym, capital letters, small

letters, and numbers are converted to A, a, and 0, respectively; and then, consecutive same characters are

squeezed into one character; lastly, the last character is stripped if it is 0. For instance, HsMad1 will be first

converted to AaAaa0, then squeezed into AaAa0, and 0 at the end is eliminated, resulting in a word class

‘‘acronym_AaAa’’. Table 2 shows some examples of acronym word classes and the words correspond to

them.
3.5. A protein name dictionary

In addition to the previous steps described so far, we take advantage of a protein name dictionary

compiled from the SWISS-PROT (Release 40.38) and TrEMBL (Release 22.6) protein databases

(O’Donovan et al., 2002) in order to detect the protein names which are not recognized by the hand-crafted
rules and/or a probabilistic model.

SWISS-PROT and TrEMBL contain 120,607 and 729,579 entries for proteins respectively as of

December 2002. Fig. 3 shows a fragment of the SWISS-PROT protein database (TrEMBL has the same

format as SWISS-PROT).

We built a protein name dictionary by extracting protein names and their synonyms from the protein

name fields (DE in Fig. 3). In the example in Fig. 3, ‘‘14-3-3-like protein GF14 chi’’ is a protein

name, and ‘‘General regulatory factor 1’’ is its synonym. However, since the format of the DE field

is sometimes inconsistent, it produces a number of incorrect protein names, leading to erroneous detection
of protein names. Therefore, we excluded unlikely protein names which (a) begin with special characters
2

les of acronym word classes and some acronyms associated with them (not necessarily protein name fragments)

onym class Examples

nym_OA 90K, 3B, 32DC13

nym_AOa C1q, E3s

nym_AaAa HsMad1, HsRad52

nym_aAOA eIF4G



Fig. 3. A fragment of the SWISS-PROT protein database.
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(e.g., spaces, commas, and parentheses), (b) consist of only numerals or less than two characters, or (c) end

with a hyphen or apostrophe.

In addition, we excluded the protein names composed of less than three tokens (words and symbols)

since these protein names were found to harm the overall accuracy of identification. Furthermore, we

applied the detection rules and expansion rules on the initial set of protein names extracted from SWISS-

PROT and TrEMBL, and those detected by the rules were discarded so as to improve processing speed by

decreasing the dictionary size.
As a result, 114,876 of protein names and their synonyms were included in the dictionary.
3.6. Automatic construction of annotated corpora

We proposed probabilistic models for expanding protein name boundaries and filtering out

unlikely candidates, which require corpora annotated with protein names for training. However, creating

annotated corpora needs biological expertise and is, even for human experts, time-consuming. Therefore, it

is highly desirable to create a large-scale corpus in an automated way. Here, the important point to note is

that training data do not need to be exhaustively annotated. That is, the total number of annotations is

more important than coverage for training. Taking this into account, we propose a framework to auto-
matically construct a large-scale corpus annotated with protein names.

The basic idea is that given a MEDLINE abstract we annotate protein names only if specific proteins are

already known to be described in the abstract. These associations between proteins and MEDLINE ab-

stracts can be easily extracted from a number of databases. In this study, we use the Protein Information

Resource Non-redundant REFerence protein database (PIR-NREF) (Wu et al., 2002) containing 1,228,541

entries as of April 2003 (the release 1.21) due to its comprehensiveness. Fig. 4 shows a fragment of the PIR-

NREF protein database.

The example in Fig. 4 indicates that the article associated with PubMed ID 10719003 is related to
maturase-like protein. It does not ensure that the exact name maturase-like protein appears

in the corresponding MEDLINE abstract because there are many variations of protein names. But if the

protein name does appear in the text then we use the text as a source for annotation. We extracted all pairs

of protein names and PubMed IDs from the PIR-NREF database and annotated the protein names in cases

where they appear in the corresponding MEDLINE abstracts. Fig. 5 illustrates the process of automatic

annotation.

As a result, we obtained a corpus containing 32,328 MEDLINE abstracts annotated with 91,773

occurrences of protein names. The corpus will be used for training the probabilistic models for protein
name boundary expansion.



<AbstractText>Several related
<protein>cytochrome P450</protein>
cDNAs belonging to the CYP9 family
have been cloned from the midgut of
larval tobacco … </AbstractText>

<AbstractText>Several related
<protein>cytochrome P450</protein>
cDNAs belonging to the CYP9 family
have been cloned from the midgut of
larval tobacco … </AbstractText>

PIR-NREF
DB

(cytochrome P450, 10844248)
(coat protein, 10500279)
(70kDa protein, 8578858)
(maturase-like protein, 10719003)

(cytochrome P450, 10844248)
(coat protein, 10500279)
(70kDa protein, 8578858)
(maturase-like protein, 10719003)

PubMed

extract protein names
and PubMed IDs

retrieve and annotate

……

train probabilistic models

Fig. 5. An illustration of automatic annotation for protein names.

Fig. 4. A fragment of the PIR-NREF protein database.
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4. Evaluation

4.1. Overview

To evaluate the effectiveness of our method described above, we implemented a protein name identifi-

cation system, named PROTEXROTEX, as illustrated in Fig. 1 and conducted a series of experiments, in which our

system was compared with the Yapex protein name identification system (Franz�en et al., 2002; Olsson et al.,

2002). There are three reasons this particular study was selected for comparison; according to our survey,
Yapex is one of the state-of-the-art protein name identification systems based on hand-crafted rules; the

system is publicly available through a CGI program at the Proteinhalt i text (protein concentration in text)

project homepage (Franz�en, 2003); and the annotated corpora used for the development and evaluation of

Yapex are also publicly available.

The annotated corpora consist of a reference corpus and a test corpus, and they contain 99 and 101

MEDLINE abstracts, respectively. The reference corpus, which is annotated with 1745 proteins, is used for

training our probabilistic models for protein name boundary expansion and for computing the certainty

scores, and the test corpus, which is annotated with 1966 protein names, is used for evaluation. Hereafter,
we will call the reference corpus the training set and the test corpus the test set.
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In the following experiments, we mainly compare four different models below for protein name iden-

tification. Notice that the protein name fragment detection step is done by heuristic rules in all cases (see

Fig. 1).

• rule: uses hand-crafted rules for protein name boundary expansion,

• rule+ dic: the same as rule, but also uses the protein name dictionary for identification,

• prob: uses the probabilistic model for protein name boundary expansion and the filter (based on the cer-

tainty scores),

• prob+ dic: the same as prob, but also uses the protein name dictionary for identification.

4.2. Evaluation metrics

Precision, recall, and F -score are used as evaluation metrics. Precision is the number of protein names a
system correctly detected, divided by the total number of protein names detected by the system. Recall is

the number of protein names a system correctly detected, divided by the total number of protein names

contained in the input text. F -score combines these measures, recall and precision, into a single score and is

defined as in Eq. (8).
4 Ex
F -score ¼ 2	 precision	 recall

precisionþ recall
ð8Þ
For judgment of correctness, we follow Olsson et al. (2002) and use three criteria introduced in Yapex’s

evaluation: exact, partial, and fragment matches. 4 As for exact match, every fragment composing a protein
name has to be correctly detected to be judged as correct, whereas, for partial match, a detected protein

name is counted as correct in cases where any fragments composing the protein name are correctly detected.

For fragment match, the counting unit is a fragment; that is, each fragment composing a protein name is to

be judged independently whether it is correctly detected or not.

For instance, suppose that a protein name ‘‘ribosomal protein L22’’ is detected as ‘‘ribosomal protein

L22,’’ where bold fonts indicate the detected fragments. In this case, it is not counted as an exact match

because ‘‘ribosomal’’ was not detected, whereas it is counted as a partial match because at least one token

composing the protein name were correctly detected. Lastly, it is counted as two fragment matches because
two fragments out of three were correctly detected.

4.3. Results and discussion

4.3.1. Overall performance

Table 3 shows the result of the comparative experiment. The figures in the column ‘‘Yapex’’ are directly

cited from the Proteinhalt i text project homepage (Franz�en, 2003), and rule, rule+ dic, prob, and prob+ dic
denote our proposed methods. A threshold for the certainty score (see Section 3.4) was set to 0.245 in this

experiment, which was derived by applying twofold cross-validation to the training data so as to maximize

F -score for exact match. To put it more precisely, we divided the training data into two sets of text A and B
in equal size, and used A for computing certainty scores for B and, in turn, used B for computing certainty

scores for A with varying the threshold. Then we took an average of the thresholds which maximized

F -score for each set.

Comparing rule and prob, the latter produced better results in most cases. Especially, there is a marked

increase in recall for fragment match from 66.5 to 75.6 (+12.0%), indicating that prob correctly expanded
act, partial, and fragment matches correspond to strict, PNP, and sloppy, respectively, proposed by Olsson et al. (2002).



Table 3

A comparison between Yapex and our proposed methods on the test set of 101 MEDLINE abstracts

Evaluation criteria Yapex rule rule+dic prob prob+dic

Exact Recall 59.9 65.0 (+8.5%) 66.1 (+10.4%) 66.9 (+11.7%) 67.7 (+13.0%)

Precision 62.0 56.0 ()9.7%) 56.3 ()9.2%) 60.1 ()3.1%) 60.2 ()2.9%)

F -score 61.0 60.1 ()1.5%) 60.8 ()0.3%) 63.3 (+3.8%) 63.7 (+4.4%)

Partial Recall 81.4 86.0 (+5.7%) 86.9 (+6.8%) 86.0 (+5.7%) 86.7 (+6.5%)

Precision 84.3 74.0 ()12.2%) 74.1 ()12.1%) 77.2 ()8.4%) 77.2 ()8.4%)

F -score 82.8 79.6 ()3.9%) 80.0 ()3.4%) 81.4 ()1.7%) 81.6 ()1.4%)

Fragment Recall 76.2 66.5 ()12.7%) 69.7 ()8.5%) 75.6 ()0.8%) 78.0 (+2.4%)

Precision 75.8 75.4 ()0.5%) 75.4 ()0.5%) 74.3 ()2.0%) 74.1 ()2.2%)

F -score 76.0 70.7 ()7.0%) 72.5 ()4.6%) 75.0 ()1.3%) 76.0 (0%)

Numbers in parentheses indicate percentage increase/decrease relative to Yapex.
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more protein name boundaries than rule (with a slight decrease of precision from 75.4 to 74.3 ()1.4%)). As
a result, it led to higher precision in identifying exact protein names from 56.0 to 60.1 (+6.8%).

In cases where the protein name dictionary was consulted (i.e., rule+ dic and prob+ dic), the recall

marginally improved by 0.8–4.6% with the precision remaining steady irrespective of rule or prob used for

protein name boundary expansion. Since dictionary lookup was done simply by exact match between

dictionary entries and input in this study, more flexible string matching techniques may yield higher recall.

Those techniques, such as one proposed by Krauthammer et al. (2001), should be explored in future work.

When compared to Yapex, our probabilistic methods, prob and prob+ dic, produced lower precision

irrespective of the criteria for judgment of correctness (2.0–8.4% decrease), while they showed higher recall
than Yapex (2.4–13.0% increase) except for fragment match by prob. Consequently, their F -scores were

found quite comparable to those of Yapex, despite the fact that our methods do not rely on POS taggers or

syntactic parsers as used in Yapex.

We evaluated our methods on several criteria, i.e., exact, partial, fragment matches and recall, precision,

and F -score. Which criterion is important depends on what purpose we use the system for. Considering our

ultimate goal, i.e., text mining for the cancer–protein relations, exact match would be important for dis-

tinguishing numbers of protein names and for associating extracted information with them. As for recall

and precision, high recall will be preferable in the case where comprehensive information is needed, while
high precision will be preferable in the case where reliable information is needed. We will show later that

higher precision can be achieved by restricting the system output based on the certainty score introduced in

Section 3.4.

4.3.2. Performance for compound names

Since our proposed probabilistic model is focusing on name boundary expansion, it is expected to be

more effective particularly for compound protein names (those composed of multiple tokens). To dem-

onstrate the advantage, we evaluated Yapex and our method solely on compound protein names. The test

set used in this evaluation is the same as the one used above and contains 897 occurrences of compound

protein names. Table 4 shows the result. Since Yapex’s performance for compound names are not sepa-

rately reported, it was obtained by submitting the test set to the Yapex demo page (Franz�en, 2003) on
March 27, 2003.

In the case where only compound protein names are considered, prob mostly outperformed Yapex
especially for exact match, indicating that it found protein name boundaries more accurately and more



Table 4

A comparison between Yapex and our methods for compound protein names on the test set

Evaluation criteria Yapex rule prob

Exact Recall 53.2 46.8 ()12.0%) 61.0 (+14.7%)

Precision 49.7 55.0 (+10.7%) 57.6 (+15.9%)

F -score 51.4 50.6 ()1.6%) 59.3 (+15.3%)

Partial Recall 73.3 63.4 ()13.5%) 78.6 (+7.2%)

Precision 68.5 74.6 (+8.9%) 74.3 (+8.4%)

F -score 70.8 68.6 ()3.1%) 76.4 (+7.9%)

Fragment Recall 65.8 53.0 ()19.5%) 69.8 (+6.1%)

Precision 65.1 75.0 (+15.2%) 66.4 (+2.0%)

F -score 65.4 62.1 ()5.0%) 68.0 (+4.0%)

Numbers in parentheses indicate percentage increase/decrease relative to Yapex.
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exhaustively than Yapex. This result verifies the advantage of our probabilistic model for finding com-
pound protein names and their boundaries. Let us stress again that Yapex uses a syntactic parser to find

name boundaries, whereas our method solely relies on surface clues without those NLP tools.

As for the rule-based method, rule, it results in poor performance in recall. This is due to the simplicity of

our rule set for protein name expansion, and thus it could be improved by adding more comprehensive

rules. However, Yapex’s results suggest that it might result in a decline of precision unless carefully tuned;

Yapex also adopts a rule-based method, showing higher recall but lower precision than rule.

The advantage of our method for compound names, at the same time, implies a disadvantage of our

method for single-word names, since overall Yapex and our system produce comparable results (in terms of
F -score). Table 5 provides the results regarding single-word names on the test set, where evaluation criteria

for matching (i.e., exact, partial, and fragment matches) are not reported because there is no distinction

among them for single-word names.

Table 5 shows some decrease in F -score for our methods as compared with Yapex, but the difference

()2.9% for prob) was found not as significant as that for compound names. This is mainly because the

numbers of single-word and compound names are different in the test set, that is, since there are more

single-word names, they have more influence on the overall performance.

In order to filter out unlikely single-word protein name candidates, Yapex makes use of a dictionary
compiled from the SWISS-PROT database, which appears to contribute to improve the precision for single-

word names. As discussed in Section 2, however, such a dictionary could be quickly obsolete as new protein

names continue to be created. One possible solution is to continually update the dictionary. Yoshida,

Fukuda, and Takagi (2000) proposed a framework to automatically construct a protein name abbreviation
Table 5

A comparison between Yapex and our methods for single-word protein names on the test set (containing 1069 single-word protein

name occurrences)

Evaluation criteria Yapex rule prob

Recall 66.2 80.3 (+21.3%) 71.5 (+8.0%)

Precision 71.4 56.4 ()21.0%) 62.6 ()12.3%)

F -score 68.7 66.3 ()3.5%) 66.7 ()2.9%)

Numbers in parentheses indicate percentage increase/decrease relative to Yapex.
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dictionary from MEDLINE abstracts, which can be integrated into our system with a precompiled dic-

tionary so as to improve the performance for single-word names.
4.3.3. Alternative models

To deal with the data sparseness problem, we introduced a bigram class model for generalization, which

is an integration of class–class and class–word transitional probabilities. To validate the effectiveness of the

model, we compared it with two other alternatives: one without word classes (less generalized) and one

without words (more generalized). Eqs. (9) and (10) show the conditions of these models respectively for

expanding name boundaries leftward. Notice that Eq. (9) is the same as Eq. (1) (i.e., before introducing a

bigram class model).
Table

A com

names

Eva

Exa

Part

Fra

Numb
Ppðwi�1jwiÞ > Pnðwi�1jwiÞ ð9Þ
Ppðci�1jciÞ > Pnðci�1jciÞ ð10Þ
Table 6 shows the results of protein name identification using our proposed model (prob) and the

alternatives, in which ‘‘word’’ and ‘‘class’’ denote the word transition model defined as in Eq. (9) and the

class transition model as in Eq. (10), respectively.

In terms of partial match, there is less difference among these three models. This is expected by the
definition of partial match: ‘‘detected protein names are judged as correct if any token composing them is

correctly detected.’’ In other words, if any fragment of protein names is correctly detected by hand-crafted

rules in the initial detection phase (which is in common for all models), it is regarded as correct. That is,

name boundary expansion does not make much difference in performance for partial match. For other

evaluation criteria, our proposed model outperformed the others, especially in exact match, indicating that

our model is effectively generalized by combining transitional probabilities for words and classes.

4.3.4. The use of an automatically constructed corpus

We trained our proposed probabilistic model on the automatically constructed large-scale corpus, i.e.,

32,328 MEDLINE articles annotated with 91,773 occurrences of protein names (see Section 3.6). Table 7
6

parison between our proposed model (prob) and word transition and class transition models on the test set (for all protein

)

luation criteria prob word class

ct Recall 66.9 41.8 ()37.5%) 41.6 ()37.8%)

Precision 60.1 41.0 ()31.8%) 48.0 ()20.1%)

F -score 63.3 41.4 ()34.6%) 44.6 ()29.5%)

ial Recall 86.0 74.7 ()13.1%) 72.0 ()16.3%)

Precision 77.2 73.3 ()5.1%) 83.0 (+7.5%)

F -score 81.4 74.0 ()9.1%) 77.1 ()5.3%)

gment Recall 75.6 48.0 ()36.5%) 63.8 ()15.6%)

Precision 74.3 67.2 ()9.6%) 66.1 ()11.0%)

F -score 75.0 56.0 ()25.3%) 64.9 ()13.5%)

ers in parentheses indicate percentage increase/decrease relative to prob.



Table 7

Results produced by probabilistic models trained on manually and automatically annotated corpora

Evaluation criteria Compound Overall

manual auto manual auto

Exact Recall 61.0 66.3 (+8.7%) 66.9 68.4 (+2.2%)

Precision 57.6 51.6 ()10.4%) 60.1 57.3 ()4.7%)

F -score 59.3 58.1 ()2.0%) 63.3 62.4 ()1.4%)

Partial Recall 78.6 85.5 (+8.8%) 86.0 91.3 (+6.2%)

Precision 74.3 66.6 ()10.4%) 77.2 76.6 ()0.8%)

F -score 76.4 74.9 ()2.0%) 81.4 83.3 (+2.3%)

Fragment Recall 69.8 78.1 (+11.9%) 75.6 82.7 (+9.4%)

Precision 66.4 63.8 ()3.9%) 74.3 69.1 ()7.0%)

F -score 68.0 70.2 (+3.2%) 75.0 75.3 (+0.4%)

Numbers in parentheses indicate percentage increase/decrease relative to manual.
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presents the results for overall performance, where ‘‘manual’’ and ‘‘auto’’ denote probabilistic models

trained on manually annotated and automatically constructed corpora, respectively. Note that the results
of manual are the same as those of prob shown in Tables 3 and 4.

Overall, the probabilistic model trained on the automatically annotated corpus (auto) achieved higher

recall than the one based on manually annotated corpus (manual), indicating that auto found more protein

names than manual, whereas the manual achieved higher precision than auto, indicating that auto also

produced false positives (i.e., detected as protein names but actually not). Consequently, auto favorably

compares with manual in F -score, despite the fact that auto does not require human efforts to create

annotated corpora.

The larger differences in the performance (recall and precision) for compound names are accounted for
the automatically annotated corpus used for training auto. That is, the larger data set provided richer

examples of protein names for training the name boundary expansion model (which resulted in higher

recall), while it also provided more false examples (which resulted in lower precision). To improve the

precision, more elaborate procedures need to be developed for creating higher quality training data. Fig. 6

shows some examples of the resulting false positives (i.e., those protein names which were detected by our

system but are not actually protein names according to the test set).
Fig. 6. Some examples of false positives produced by the probabilistic model trained on the automatically annotated corpus (auto).
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Fig. 7. The relation between recall and precision for exact match.
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4.3.5. Filtering based on the certainty scores

Lastly, the effectiveness of the certainty score introduced in Section 3.4 was examined. The certainty

scores were computed using the training set (i.e., 99 MEDLINE abstracts). The system used here is prob;

that is, the probabilistic models were used for expanding protein name boundaries. By varying a threshold

for the certainty score, we drew a recall–precision curve in terms of exact match (Fig. 7).

The right most and lowest circle corresponds to the result without restriction (i.e., threshold is 0). As

threshold increased, precision gradually increased until recall fell to around 40%. Then precision sharply

increased up to around 90% with recall decreasing. In sum, although high precision was achieved, recall
steeply dropped at the same time. To prevent recall from dipping, other features need to be explored for the

certainty measure. For instance, surrounding words (contextual cues) may be effective.

Additionally, to investigate the validity of the filter on actual protein names, we applied it to 326,489

protein names extracted from SWISS-PROT and TrEMBL databases. (Note that, unlike the protein name

dictionary construction procedure described in Section 3.5, short names and those detected by the detection
certainty score
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Fig. 8. Distribution of the certainty scores computed for 326,489 protein names in SWISS-PROT and TrEMBL.
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and expansion rules were not excluded for this experiment.) Fig. 8 gives the distribution of certainty scores

computed for these protein names.

The distribution shows the peak between 0.25 and 0.30 and is positively skewed. According to the

distribution, on the one hand, 207,016 names (63.4%) will successfully go through the filter in the case
where the threshold is set to 0.245 (which was derived based on the training data and used in our experi-

ments). On the other hand, 36.6% of actual protein names will be falsely discarded. We could recover those

protein names by lowering the threshold, but it will also cause a decrease in precision as demonstrated in

Fig. 7. Once again, more effective features need to be investigated for the certainty measure.
5. Conclusions

In this paper, we presented a hybrid method for identifying protein names in biomedical texts with an

emphasis on protein name boundary expansion. Our method utilizes a set of simple heuristics for initial

detection of protein name fragments and takes advantage of a probabilistic model for expanding and

finding protein name boundaries. The heuristics exploit surface clues reflecting the characteristics of protein

names, and the probabilistic model incorporates word classes for generalization so as to remedy the data

sparseness problem. In addition, to detect those protein names which could not be identified by the rules
and the probabilistic model, we complementarily utilized a protein name dictionary compiled from existing

protein databases.

Our method, in contrast to the previous efforts, does not rely on POS taggers and/or syntactic parsers at

all, since the information given by these NLP tools are not necessarily helpful for the task of protein name

identification. This reduces both processing overhead and the potential number of probabilistic parameters

to estimate. We implemented a protein name identification system, called PROTEXROTEX, based on our proposed

method, and conducted comparative experiments to verify its effectiveness. The results demonstrated that

PROTEXROTEX performed comparably to a best-of-the-breed system named Yapex which incorporates a syntactic
parser. Moreover, in the case where only compound protein names were evaluated, our system outper-

formed Yapex in most cases. Furthermore, we proposed a framework for automatically constructing a

large-scale corpus annotated with protein names for training a probabilistic model. Through an experiment,

it was shown that the model trained on the automatically generated corpus favorably compares with one

trained on the manually annotated corpus (in F -score). Lastly, we proposed a notion of certainty to filter

out unlikely protein name candidates for improving precision; it was demonstrated to be effective to

incrementally raise precision at the expense of recall.
6. Future work

Future work would include a refinement of the certainty measure to prevent recall from rapidly falling.

One of possible extensions is to utilize the probability estimates computed for name boundary expansion,

so as to consider context (adjacent words) to some extent. In addition, integrating a framework of auto-
matically discovering protein name abbreviations (for example, Yoshida et al., 2000) may improve the

overall accuracy by filtering out unlikely single-word protein name candidates.
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