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1. INTRODUCTION

Information-filtering (IF) systems have recently gained popularity, mainly
as part of various information services based on the Internet [Edwards et
al. 1996; Oard 1996]. These systems are similar to conventional informa-
tion retrieval (IR) systems in that they aid in selecting documents that
satisfy users’ information needs. However, certain fundamental differences
do exist between IF and IR systems, making IF systems interesting and an
independent object of analysis [Belkin and Croft 1992]. IR systems are
usually designed to facilitate rapid retrieval of information units for
relatively short-term needs of a diverse population of users. In contrast, IF
systems are commonly personalized to support long-term information needs
of a particular user or a group of users with similar needs. They accomplish
the goal of personalization by directly or indirectly acquiring information
from the user. In IF systems, these long-term information needs are
represented as interest profiles (Lewis [1992a] refers to them as standing
queries), which are subsequently used for matching or ranking purposes.
The interest profiles are maintained beyond a single session and may be
modified based on users’ feedback. Another important difference has to do
with the document source. IR systems usually operate on a relatively static
set of documents, whereas IF systems are usually concerned with identify-
ing relevant documents from a continuously changing document stream.

To operate efficiently, IF systems must acquire and maintain accurate
knowledge regarding documents as well as users. The dynamic nature of
users’ interests and the document stream makes the maintenance of such
knowledge quite complex. Acquiring correct user interest profiles is diffi-
cult, since users may be unsure of their interests and may not wish to
invest a great deal of effort in creating such a profile. Acquiring informa-
tion regarding documents is also difficult, because of the size of the
document stream and the computational demands associated with parsing
voluminous texts. At any time, new topics may be introduced in the
document stream, or user’s interests related to topics may change. Further-
more, sufficiently representative documents may not be available to facili-
tate a priori analysis or training. Research on filtering, so far, has not
clarified to a significant extent how these particular problems associated
with users and documents may influence the overall filtering process.

In this article, we present both an analytical and an empirical examina-
tion of the basic problems in filtering. In our investigation here of the
demands placed on IF systems, we identify the relevant functions and
express them at a suitable abstraction level. This abstraction (we refer to it
as the model) is then implemented as a system using well-known tech-
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niques from information science and machine learning. Following this, the
performance of the resulting system is subjected to rigorous experimental
analysis to clarify the influence of major constituent functions on the
overall filtering process. The primary objective of an IF system is to
perform a mapping from a space of documents to a space of user relevance
values. This mapping, in turn, can be decomposed into a multilevel process,
where the intermediate functions involve the subproblems of representa-
tion, classification, and profile management. To ensure effective service, we
further assume that these functions must be realized under two strict
constraints. First, user intervention in the operation of the system must be
minimized. That is, the system should rely on automated techniques as
much as possible for acquiring information about documents and users.
Second, when faced with changes in documents or users’ information needs,
the system must adjust quickly with little or no degradation in perfor-
mance.

In the rest of this section, we discuss in more detail the challenges
associated with performing effective filtering while minimizing user inter-
vention and system degradation. We then identify some of the basic
problems associated with filtering and delineate our approach for address-
ing them. We conclude the section by surveying related research. In Section
2, we present our model for information filtering. A description of an
implementation of the model, named SIFTER (Smart Information Filtering
Technology for Electronic Resources), is provided in Section 3. Results of
experimental analysis conducted on SIFTER (and indirectly on the under-
lying model used) are presented in Section 4. In Section 5, we discuss
possible future extensions of SIFTER. Finally, we present our conclusions in
Section 6.

1.1 Problem Description

Uncertainties in the filtering environment—especially the dynamic nature
of users’ interests and the document stream—make it extremely difficult to
gather and maintain accurate information necessary for filtering. Rapid or
gradual changes introduced in the environment, viewed from the perspec-
tive of the filtering system, are sources of uncertainty. To manage such
uncertainties requires a high level of adaptivity on the system’s part. This
adaptivity can be achieved by applying various machine-learning tech-
niques. The overall problem of IF may then be broadly posed as learning a
map from a space of documents to the space of real-valued user relevance
factors. More precisely, denoting the space of documents as D, the objective
is to learn a map f : D 3 R such that f(d) corresponds to the relevance of a
document d. Given that such a map is known for all points in D, a finite set
of documents can always be rank-ordered and presented in a prioritized
fashion to the user.

In an IF system, f is not known a priori and has to be estimated on-line
based on queries and user feedback. This could, in principle, be accom-
plished by setting up some form of a parameterized map approximator
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(such as artificial neural networks) and updating the parameters based on
the feedback. Such a direct on-line learning of the map f, however, is
computationally intensive and requires a large number of user feedbacks,
considering the high dimensionality of any reasonable representation of the
documents. To provide a practically feasible solution to the filtering prob-
lem, we decompose the latter into two levels. The higher level represents a
classification mapping f1 from the document space to a finite number of
classes {C1, . . . , Cm} (i.e., f1 : D 3 {C1, . . . , Cm}). This mapping is
learned in an off-line setting, based on a representative database of
documents, either by using prior information concerning the classes and
examples or by automatically discovering abstractions using a clustering
technique. Hence, this higher level partitions the document space into m
equivalent classes over which user relevance is estimated. The lower level
subsequently estimates the mapping f2 describing user relevance for the
different classes (i.e., f2 : {C1, . . . , Cm} 3 R). Since f2, unlike f and f1,
deals with a finite input set of relatively few classes, the on-line learning of
f2 is not unrealistically time consuming and burdensome on the user. Thus,
the map f is being learned as the composition of f1 and f2. The decomposi-
tion of f into f1 and f2 clearly limits the maximum achievable filtering
accuracy, since a class may not correspond to a constant user interest.
However, in our experience, the resulting inaccuracy is more than ade-
quately compensated for by the substantial reduction in learning complex-
ity. If greater accuracy is desired, it can be achieved as a two-stage process.
In the first stage, a two-level map (i.e., f1 and f2) is learned as stated
before. Subsequently, a more general single-level learning scheme can be
initialized on the basis of learned f1 and f2. From then onward, the general
map can be used for ranking purposes and can be updated on the basis of
user feedback.

Decomposition of f only aids in reducing the learning complexity; it does
not eliminate it. The on-line learning problem is made even more difficult
due to the following factors:

(1) Difficulty of Representation: In general, it is not possible to represent D

exactly by a finite-dimensional space that corresponds to some features
of the documents (e.g., the relative frequencies of some predefined
keywords). Hence, any finite-dimensional representation space D9 is
merely an approximation to D, and there is always a loss of information
in the process. The area of document representation and indexing
[Salton and McGill 1983] is devoted to discovering methods for finite-
dimensional representations that minimize the information loss in
some sense. In a dynamic environment, to make the problem more
difficult, the most preferable representation scheme is also a function of
time. The choice of the representation scheme directly affects the
realization of function f1.

(2) Stochasticity of Feedback: The user relevance feedback may at certain
times appear to be random to the filtering system. This can occur due to
several reasons. First, the particular user interacting with the system
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may have uncertain needs or may not be very discriminating in
expressing his or her needs. Second, depending on the f1 chosen, the
target classes may not correspond to the way a user would normally
group documents. This may lead to the generation of different user
relevance feedback values for documents belonging to the same class.
The third and final factor relates to the difficulty described in (1). On
certain occasions, user feedback may be motivated by particular fea-
tures (e.g., keywords) in documents that are actually not part of the
underlying representation scheme. Feedback generated based on such
“missing features” would appear as random, because the system would
be unable to determine what caused such feedback.

(3) Changing Interests of the User: Due to personal or professional reasons,
a user’s interests may shift or change. These changes may happen in a
relatively short duration of time or over a long period. We refer to all
such situations as the nonstationary user case. The shifts can affect the
user’s interests partially or fully. Whatever the scope of such shifts, the
interest profile must be updated accordingly. The map f2 is directly
affected by this problem.

As mentioned earlier, due to the inherent complexity, filtering based on a
direct learning approach is very difficult to accomplish in an efficient
fashion. Decomposition allows us to isolate more specific problems, and we
solve them by relying on existing and newly developed approaches. The
main contributions of this article can now be summarized as follows:

—We present a general model of filtering. As a way to reduce complexity,
the architecture of the model incorporates multilevel functional decompo-
sition and supports generality through modularity. It admits application
of virtually any preferred techniques for basic tasks involving represen-
tation, classification, and profile management.

—The idea of learning is made central to the filtering process. We show
how learning techniques can support the high degree of adaptivity
required while minimizing user intervention. We apply learning tech-
niques for acquiring information about both documents and users. To
support adaptation to changes in the document stream, an unsupervised
cluster discovery method is used. A reinforcement learning algorithm
with very low overhead is used for user interest profile acquisition.

—We demonstrate how representation can be conducted on a dynamic
stream of text. The method provides a high degree of control in determin-
ing what content to capture and what to ignore. The classification process
is also designed to be flexible. The set of classes (i.e., the target of f1) can
easily be changed by invocation of a relearning process. Both of these
features allow convenient tuning of the filter to minimize user interven-
tion.

—We describe a method to handle profile degradation due to shifts in user
interests. Graceful handling of interest shifts without requiring addi-
tional data from the user is supported by the method. It is capable of
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detecting multiple interest shifts in the same user and can take appropri-
ate actions to minimize possible negative effects on the function f2.

Preliminary simulation experiments involving an implementation of the
general model have been reported in earlier sources [Lam et al. 1996;
Mukhopadhyay et al. 1996]. These experiments simulated the operation of
filtering LISTSERV emails. In this article, we describe the integration of
all functionalities into a complete working system, conduct studies involv-
ing human users in a real-world filtering application, and systematically
analyze the influence of various user- and system-related parameters on
the filtering performance.

1.2 Related Work

As mentioned in the introduction, IF systems are strongly related to IR
systems in their functional goals and in the methods they apply to accom-
plish those goals. Belkin and Croft [1992] provided an excellent review of
IF, comparing it with IR and several other closely related processes (e.g.,
text routing, text categorization, etc.). We do not intend to repeat such a
comparison here. Instead, we review literature that deals more directly
with the problems delineated in the last section.

A basic filtering problem is to transform a large volume of information
(text) into entities that permit efficient computation without significant
loss of content. In our formulation of the problem, this is the objective of
function f1, mapping documents to a more limited space of document
classes. This particular task is generally referred to in IR as automated
document classification. The first step in this process demands that a
representative feature set for each document be identified. Various tech-
niques have been developed for feature selection, ranging from simple
procedures that calculate statistical distribution of keywords to more
sophisticated techniques relying on analysis based on natural language
processing (NLP) algorithms. Lewis [1992a] provided a thorough review of
feature selection procedures and the influence of such procedures on
document classification. The general and surprising finding of feature
selection research in IR is that simple keyword-distribution-based ap-
proaches are almost as effective as more sophisticated approaches [Lewis
1992b]. The next step in classification involves assigning documents to one
or more groups. In IR, hierarchical cluster generation techniques such as
single-link and complete-link methods are commonly applied [Salton 1989].
A particular track of research in IR has concentrated on generating
predictive classifier functions based on off-line training conducted on
representative document sets. As far back as 1963, Borko and Bernick
[1963] described a text classifier based on a simple linear regression model
that produced good results. A more recent successful effort that also
applied a linear model classifier, based on least-squares fit, was described
by Yang and Chute [1994]. The DARPA-sponsored MUC (Message Under-
standing Conferences) initiative has generated significant research in the
area of text routing [Lewis and Tong 1992]. The MUC efforts rely on strong
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NLP approaches to develop classifiers, since analysis is necessary at a
fine-grain level to assess document content (e.g., identification of terrorist
events based on news stories). It has been demonstrated, however, that less
complex linear models may be appropriate if the type of information a
system must handle is relatively simple (e.g., elements that constitute
bibliographic document information). Generally, in most IF systems, the
classification process has to be conducted fast, whereas the classifier
building process can be delegated to a slower process.

Traditionally, IR placed little attention on the users’ role—specifically,
identification of users’ interests, representation of interests, and applica-
tion of such representations in interactions [Belkin and Croft 1992]. My-
aeng and Korfhage’s [1990] work on user profiles is one of the few and
important efforts in this area. It attempted to integrate user interest
profiles in IR systems and focused on various combinations of queries and
profiles in enhancing retrieval. The profiles however had certain limita-
tions. They had to be contributed directly by the user (who may be
uncertain or unwilling to take the trouble), and profiles did not change
during interaction. To keep up with changes in users’ interests automati-
cally, systems can rely on internal knowledge representations or on learn-
ing. Rich [1983] demonstrated how in an IR setting, in the absence of direct
evidence about information needs, stereotypes can be applied to generate
user models representing long-term interests. This is an innovative tech-
nique; however, substantive human investment in knowledge engineering
would be required to build the user stereotypes. Relevance feedback, a
highly constrained and indirect form of evidence, has been successfully
used to learn and adapt representations used for the purpose of query
reformulation [Frants et al. 1993; Goker and McCluskey 1991]. It should be
noted, though, that in many IF systems queries (in an IR sense) are not
necessary, and users’ interests are more stable than in typical IR situa-
tions. These factors must be taken into consideration in devising methods
that minimize user involvement in profile management.

A body of IF research exists that directly addresses problems associated
with profile acquisition and maintenance, applying mostly AI-based tech-
niques. Malone et al. [1987] described an intelligent message-sharing
system called InfoLens in which users can generate profiles using rules.
The rules prescribe appropriate actions with tests on content-based factors
such as message type, date, and sender. Such explicit user-based knowl-
edge acquisition methods support a high degree of transparency, permit-
ting users to follow an “up-to-the-moment” knowledge state of the system.
InfoScope, a system that applies a similar technique, has been developed
for filtering Usenet news [Fischer and Stevens 1991]. InfoScope uses
heuristic rules associating common patterns of usage (e.g., number of
sessions, newsgroups read, frequencies of relevant terms in an article, etc.)
to appropriate actions. To refine profiles, users must add or remove terms
from the profile and must set appropriate rule-triggering thresholds. The
requirement for direct and explicit user input for profile management, in
our view, is somewhat demanding, and furthermore, such rule-based ap-
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proaches may be too “brittle” to support efficient profile adaptation. News-
Weeder [Lang 1995] is another Usenet filtering tool. In this, users’ ratings
of documents are used as training examples for a machine-learning algo-
rithm that is executed nightly to generate the user interest profiles for the
next day. By limiting the user input to only ratings of documents, News-
Weeder is successful in reducing user involvement. However, NewsWeed-
er’s inability to adapt the profile in an on-line fashion limits its utility.
SIFT (Stanford Information Filtering Tool) has also been developed to filter
Usenet news [Yan and Garcia-Molina 1995]. SIFT requires users to specify
keywords to generate the initial profile. Depending on the user’s choice, the
filter may be represented using the vector-space model or simply as a
boolean formula. If a vector-space approach is selected, SIFT can provide
some adaptivity in profile refinement. In this mode, SIFT requires users to
provide relevance feedback (by pointing out documents of interest), based
on which weights in the profile are adjusted accordingly. Finally, NewT
(news tailor) [Seth 1994] offers the user the option to select multiple
profiles from a set of predefined profiles that cover common topical areas.
NewT also applies relevance feedback for profile adaptation. To further
reduce user involvement in profile refinement, NewT utilizes a genetic
algorithm to evolve profiles toward increased fitness.

In summary, IR provides a solid basis to exploit various document
representation techniques, especially for the intermediate IF stage of
document classification (i.e., f1). Relevance feedback and machine-learning-
based approaches show promise in handling the subsequent IF operation of
user modeling. However, at this point little is known as to how multiple
functional components can be integrated satisfactorily in a single IF
system, and additional empirical evidence is required to clarify how char-
acteristics associated with users and the document stream may affect
filtering performance.

2. FILTERING MODEL

There are three important and independent entities that constitute a
filtering environment. These are the document source, the filter, and the
user (Figure 1). Documents may exist at various sites and may be received
by the user through disparate channels. The task of storing such docu-
ments, before filtering, is handled by a component we call document
acquisition and management (DAM). DAM is a separate component from
the filter, and its actual design may vary from one environment to another.
For example, at its core, DAM may be a web-crawler utility that retrieves
documents from designated sites, a daemon that maintains indexed files, or
even a sophisticated DBMS. Whatever the construction of DAM, when
invoked, it would produce a stream of documents that flows into the filter.

The filter itself consists primarily of three modules: (M1) representer,
(M2) classifier, and (M3) profile manager. In the context of the multilevel
decomposition of the map f : D 3 R (i.e., f 5 f2 + f1) discussed in Section
1.1, M1 determines the input space for f1; M2 maps the resulting vector
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representation to the classification space (i.e., the output for f1); and M3
implements the mapping f2. The functions of these modules are best
described in terms of two different modes: filter application and filter
tuning. In the filter application mode, upon arrival of new documents the
representer module transforms the stream into more efficient representa-
tions. This transformation would involve identifying relevant concepts and
correctly assessing the discriminatory value of concepts in relation to
specific documents. To avoid unnecessary parsing of concepts, a thesaurus
management submodule would be used to select concepts for only those
domains that are of interest to the user. The function of the classifier
module is to identify for each document its corresponding document class or
group. The classifier module utilizes a classification scheme, generated by a
submodule, as an off-line process. In selecting an appropriate size for the
space of classes, a crucial constraint must be followed. The space of classes
in the filter must be smaller than the space of input document space. This
aspect of the filtering model ensures a significant reduction in computa-
tional complexity (see the discussion in Section 1.1). The profile manager
module has the dual role of maintaining accurate interest profiles and
applying the profiles to assess the relevance of documents. Profile represen-
tation constitutes information concerning user preferences for document
classes utilized by the filter. Such preference information may be acquired
in various ways, but the method requiring the least user effort should be
favored (i.e., it should be the default method used by the system). It
appears that the best automatic profile acquisition methods are available
from the machine-learning literature, relying on relevance feedback from
the user. Whatever method is ultimately chosen, users should always have
the option to enter or modify values in their profiles directly to ensure
transparency of the filter. Once profile representation is achieved, docu-
ments are ranked in relation to their membership in classes. It is worth
noting here that, due to the strict imposition of a class space, assignment of

Fig. 1. Model of the filtering process.
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semantically related documents to different classes may occur. But, as
profile learning is always conducted over the set of classes, it would have
minimal effect on the overall document ranking. After the profile is
learned, the classes that are semantically related are treated approxi-
mately equally by the system, for ranking purposes.

At the output end of the filtering model lies the presentation and access
management (PAM) system. PAM is more tightly coupled with the filter
than DAM and would normally be the user interface of the filtering system.
To support the filter application mode, PAM can offer various functions, the
most important being the actual presentation of documents. PAM must
allow the user to select documents for display and to control the way
documents are actually displayed (e.g., window size, font size, color, etc.).
Another important function of PAM is to collect information for the purpose
of profile management. For example, if relevance feedback is chosen,
functions should exist to permit users to point out relevant documents.

In modeling the filter, we also identified ways of tuning the filter so as to
customize and improve its performance. Various types of tuning operations
can be performed to influence the behavior of the three modules that
constitute the filter. The frequency of such tuning would vary depending on
the proximity of the particular module to the user (i.e., from the PAM end
of the model). Hence, the profile manager is subjected to frequent tuning.
An important type of tuning that applies to the profile manager module is
avoidance of profile degradation when a user’s interests change due to some
external circumstances. Because such a case can have an immediate effect
on the filter’s performance, it should preferably be handled automatically.
This would require continuous monitoring of users’ feedback and predicting
shifts as quickly as possible. We show this tuning operation as a submodule
of the profile manager module. The structure, size, and content of the
classification scheme can also have a significant influence on the filter’s
behavior. Such a scheme is usually generated using a training document
set (a large and representative document set). However, the content of the
document stream may change sufficiently over time to demand regenera-
tion of the classification scheme. This type of tuning would be necessary
less frequently and can be conducted by a submodule of the classifier (using
the last n documents as the new training set). Finally, the structure and
content of the thesaurus may directly affect document representation and
consequently the rest of the filtering processes. When a domain or a field
experiences significant change (which usually happens very slowly), tuning
operations would be needed to update the thesaurus to keep up with such
changes. We show these operations as a submodule of the representer
module.

3. SIFTER: AN IMPLEMENTATION OF THE FILTERING MODEL

As a way to empirically investigate the utility of the model, we imple-
mented a filtering system named SIFTER (written in C and TCL/TK for a
Unix environment) that incorporates the major components described in
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the last section. We now describe these components in detail. We begin
with the filter part of SIFTER, focusing mainly on the three constituent
modules.

3.1 Document Representation Using a Vector-Space Model

The first component of the filter (i.e., the document representation module)
needs to convert documents into structures that can efficiently be parsed
without the loss of vital content. We chose the vector-space model [Salton
1989] for document representation, because it has been widely tested and is
general enough to support other computational requirements of the filter-
ing environment. This, in turn, relies on a thesaurus management submod-
ule. At the core of the latter is a set of technical terms or concepts culled
from authoritative sources representing a given area (presently, we are
using the ACM Computing Reviews Classification Scheme and the Ameri-
can Society of Information Science Thesaurus for filtering documents). The
thesaurus management submodule is also used for the pruning of common
functional terms, as well as several term normalization tasks, including
synonymy control and singular-plural form control.

We apply the popular tfpidf (term frequency times inverse document
frequency) technique to establish the particular degree of importance for
each concept in a document. To apply this technique, a table is generated
off-line containing total frequencies of all terms in the thesaurus, using a
sufficiently representative collection of documents as a base (2000 docu-
ments randomly sampled from the source). A separate and representative
document base is especially useful in filtering because the incoming docu-
ment stream may occasionally contain only a few documents. In the on-line
filter application mode, another table is generated containing the frequen-
cies of all unique terms found in newly arrived documents. Then, based on
the values in the two tables, the following equation is used to derive
appropriate weights for terms in each document:

Wik 5 Tik 3 log~N/nk!,

where Tik is the number of occurrences of term Tk in document i; Ik 5
log(N/nk) is the inverse document frequency of term Tk in the document
base; N is the total number of documents in the document base; and nk is
the number of documents in the base that contain the given term Tk.

3.2 Document Classification Module

The classification module consists mainly of two processing stages: an
unsupervised cluster learning stage and a vector classification stage.
During the learning stage, an initial cluster hypothesis [C1, . . . , Ck] is
generated from a representative sample of document vectors [S1, . . . , SN].
Each cluster Ci is then represented by its centroid, Zi. During the classifi-
cation stage, an incoming document vector Vi is classified into a particular
class Ck using the learned centroids from stage 1. The learning of cluster
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centroids is done in an off-line batch mode while classification is carried out
continuously as documents arrive.

A simple, heuristic, unsupervised clustering algorithm, called the Maxi-
min-Distance algorithm [Tou and Gonzalez 1974], is currently used to
determine the centroids over the document vector space. In this algorithm,
centroids are generated in an iterative manner. At each stage, a point
(document) in the data set is selected that has the largest distance from the
existing centroids. The distance of any document from the existing cen-
troids, in turn, is the minimum of its distances over all the centroids. The
selected point is then added as a new centroid only if its distance from the
existing centroids is an appreciable fraction of the previous maximum
distances. The threshold value used for this fraction determines the gran-
ularity and the number of the clusters. During the on-line operation, the
classification module merely classifies an incoming document vector Vi as
belonging to the class whose centroid has the minimum distance to the
document vector. The resulting class information corresponding to each
vector is then passed on to the user profile learning module.

The measure used for computing the distance between two document
vectors is the cosine similarity measure [Salton 1989]. Given two nonnull
document vectors X 5 [ x1, . . . , xt]

T and Y 5 [ y1, . . . , yt]
T, such a

similarity measure represents the cosine of the angle between them and is
calculated as

( i51
t xi yi

Î~( i51
t xi

2!~( i51
t yi

2!
.

The distance is then computed as 1 minus the similarity. When one or both
of the vectors are identically zero (meaning that the corresponding docu-
ments cannot be represented using the given thesaurus), no distance
computations are necessary, since all such vectors are assigned to a special
class called “others” by convention.

3.3 User Profile Learning Module

The function of the user profile learning module is to determine the user’s
preference for the different classes of information Ci (i 5 1, . . . , k) and
based on their classes as well as the estimated user preferences for the
classes to prioritize the incoming documents. To accomplish this task, the
learning agent maintains and updates a simplified model of the user, based
on the relevance feedback. The algorithm currently used to learn the user
model is based on a reinforcement learning algorithm studied in the
artificial intelligence and mathematical psychology communities [Narendra
and Thathachar 1989].

Let di denote the underlying (unknown) expected user preference (rele-
vance) for the class Ci. The learning agent maintains and updates two
vectors of dimensions equal to the number of classes. The first is the
estimated relevance probability vector, with elements d̂i (i 5 1, . . . , n),
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which is an estimate of di. The second is an action probability vector p 5
[pi], such that pi represents the probability of the class Ci being selected by
the filter as the most relevant class. Both p and d̂ vectors are continuously
updated during the learning process, on the basis of user relevance feed-
back.

The learning agent at every iteration (i.e., presentation of documents to
the user) sorts the incoming documents by first sampling the p vector to
select the class to be presented at the top. The rest of the classes are sorted
according to the corresponding d̂ values. The elements of the p vector are
all initialized to a value of 1/k, where k is the number of classes. Hence, at
the beginning, all classes are probabilistically given the chance to be
ranked at the top and, hence, to receive the user’s attention and relevance
feedback. This allows the user model, in the form of the d̂ vector, to be
learned sufficiently accurately. As the learning progresses, one element of
the p vector (corresponding to the most relevant class) approaches the
value of unity, while the rest of the elements tend to zero. At the same
time, the elements of the d̂ vector approach those of d, the underlying user
relevance vector. Hence, after a sufficiently long learning time, the ranking
of the documents is strictly performed according to user relevances for the
corresponding classes.

The learning algorithm (i.e., the algorithm for updating p(k) and d̂(k)) is
described briefly as follows [Thathachar and Sastry 1985]. d̂i(k) (i 5
1, . . . , n) at any instant is the running average of the relevance values
given by the user for documents belonging to class i. Denoting the current
maximum element of the d̂ vector as having the index l, a unit vector E(k)
is created of dimension n whose lth element is one and whose all other
elements are zero. Then pi(k) (i 5 1, . . . , n) is updated as

pi~k 1 1! 5 pi~k! 1 h~Ei~k! 2 pi~k!!,

where 0 , h , 1 is a suitably chosen step size. Thus, the p vector is moved
by a small distance toward the optimal unit vector. The convergence
properties of this algorithm have been well investigated [Thathachar and
Sastry 1985], and it is known that, with a sufficiently small step size h,
both the p vector and the d̂ vector show the desired convergence behavior
mentioned earlier.

Two points are worth repeating. First, the d̂ vector after convergence
represents a simplified model of the user’s interests. In practice, the user is
always given an option to specify his or her interests for each of the classes.
In such a case, the elements of the d̂ vector are initialized with the
user-provided values, and the learning process can be viewed merely as
augmenting the profile provided by the user. Second, profile learning,
conducted over the set of classes C, can minimize the effect of assigning
semantically related documents to different classes. Assume that docu-
ments of interest to the user are assigned to two different classes. Over a
period of time (after the profile is learned), classes that are semantically
related would be treated approximately equally for ranking purposes.
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Therefore, the user is going to see the related documents together, at the
top. Here, from the perspective of the user, it really does not matter that
documents come from two different classes.

3.4 User Interest Shift Detection Module

Although in theory the learning algorithm described in Section 3.3 has the
ability to come out of the converged state and relearn in the presence of
user interest shifts, in practice, such relearning requires a very long time.
During this intermediate period, the filtering performance is poor, since the
ranking of the documents is carried out by means of an invalid user model.
To cope with such nonstationary users, we propose using a shift detection
module that tracks any changes in users’ interests and suitably reinitial-
izes the user profile learning module. The tracking is performed on each
class separately, on the basis of a history of relevance feedback data, using
a Bayesian framework. The specific algorithm used to perform this analysis
is based heavily on Zacks and Barzily [1981]. Intuitively, the algorithm
analyzes a window of feedback collected for each class in order to decide
whether the user’s interest in the given class has genuinely changed or
whether the variation (if any) in the feedback is due only to inherent
randomness. In this section, we provide a brief outline of the method. For
further details concerning both the shift detection algorithm and reinitial-
ization of the profile-learning module in response to a detected shift, the
reader is referred to Lam et al. [1996].

Let b1, b2, . . . , bn be the sequence of the relevance feedback data
collected for a particular class. Since each bi is either 1 or 0, governed by
the underlying relevance probability of the corresponding class, bi can be
regarded as an independent Bernoulli random variable, where the rele-
vance probability is the probability of “success” of the corresponding
relevance feedback bi. Now, the problem can be viewed as detecting a shift
in the success probability in a sequence of Bernoulli trials. This, in turn, is
achieved by computing the posterior probability that a shift has occurred
given the relevance feedback data, as discussed in Zacks and Barzily
[1981].

Given Bn (i.e., the history of the relevance feedback over the last n
presentations of documents) for a given class, we denote by h (u)(Bn) and
h(d)(Bn) the posterior probability of an occurrence of an upward shift (i.e.,
an increase in the user’s interest in the given class) and a downward shift
(i.e., a decrease in the user’s interest), respectively, in the corresponding
class of information. The actual computation of these quantities is consid-
erably simplified by making several assumptions (e.g., a geometric prior
distribution) that permit the use of certain mathematical identities. These
computed posterior probabilities are used in a decision function at every
iteration to determine whether a shift has occurred. Once a shift is detected
in this fashion, the tracking system informs the profile-learning module,
and an appropriate reinitialization of the latter’s states takes place [Lam et
al. 1996].
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3.5 Graphical User Interface

Users interact with SIFTER by using a graphical user interface (GUI). The
GUI is equivalent to the PAM component of our filtering model and
performs three major functions: (1) it displays all new documents in a
ranked order, (2) it allows users to select individual documents and read
them, and (3) it collects user feedback and passes the feedback for user
profile learning. When SIFTER is invoked, a ranked list of recently arrived
document titles is displayed in a scrollable window (Figure 2). By clicking
on a document title, the user can view the content of the corresponding
document in a separate window. Providing relevance feedback is an op-
tional feature. When the window with the body of a document is initially
displayed, the user sees a “feedback button” at the bottom. If this button is
activated, then the window is extended, displaying a scale for entering

Fig. 2. Two main windows of SIFTER’s GUI. Top window shows a ranked list of documents,
and bottom window shows the body of a document with a scale for relevance feedback.
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feedback. Otherwise, the user can close the window, without providing any
feedback.

SIFTER uses the feedback values to determine the degree of interest in a
subset of classes. SIFTER’s GUI provides an optional display of the class
space (Figure 3). In this window, SIFTER’s assessment of the degree of
interest for each class is plotted as a bar graph. Another optional window
shows the graph of profile convergence. Although the convergence graph is

Fig. 3. Two SIFTER GUI windows showing the learning state of the system.
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a simple one, it is capable of communicating several key facts to the user.
For example, when the highest value in the graph is reached (topmost
horizontal line), this would indicate that the profile has been fully cap-
tured. On the other hand, when the low value is shown, this would indicate
that the profile is incomplete and that more learning is to be expected.
Additionally, oscillation patterns in the graph would indicate that more
consistent feedback is necessary. We built these two displays to allow the
user to monitor the up-to-the-moment “learning state” of SIFTER. Both of
these windows can be displayed at any time, using the “Graphs” option
from the main SIFTER window.

The present version of the GUI is designed to function in the X Window
environment. It was created using TCL/TK and a set of C routines.

4. EXPERIMENTAL RESULTS

The filtering performance of SIFTER was analyzed with two specific goals:
(1) to establish if satisfactory filtering performance can be achieved from a
system (SIFTER) based on our model and (2) to clarify the influence of
user-oriented and system-oriented variables on filtering performance. For
the document source, we used 6000 records created for journal articles from
the Information Science and Abstracts (ISA) database and computer sci-
ence technical reports collected from various sites on the Internet. Each
document record included a complete abstract, title, author, and subject
keywords. About one-third of the documents were used for training pur-
poses, and the other two-thirds were used for testing. A document acquisi-
tion module (DAM) was developed that, upon invocation, can generate a
stream containing a preset number of new documents. The output of the
DAM was used to test SIFTER.

For each experiment, the filtering performance was evaluated using two
related criteria, normalized recall and normalized precision, described by
the following equations [Salton and McGill 1983]:

Recallnorm 5 1 2
( i51

REL RANKi 2 ( i51
REL i

REL~N 2 REL!
, (1)

Precisionnorm 5 1 2
(i51

REL log RANKi 2 (i51
REL log i

log~N!/~N 2 REL!!REL!!
. (2)

In these equations, N represents the total documents in the collection, and
REL represents the total number of relevant documents. Normalized
precision and recall were selected as the performance criteria because they
are independent of a retrieval threshold used to segregate documents into
retrieved and nonretrieved sets [Salton and McGill 1983]. In SIFTER, all
documents that arrive are presented to the user in a ranked fashion.
Hence, the separation of documents into retrieved and nonretrieved sets is
artificial.
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For assessment purposes (i.e., to compute normalized precision and
recall), several additional features were built into SIFTER. At the end of
each session, users were prompted to select the documents they found to be
relevant. A logging facility was also included in SIFTER to save all input
data from a session, including information on documents that the user
found to be relevant. The log file helped us to avoid repeating sessions with
users for assessing performance under different conditions (e.g., learning
and no learning). Also, SIFTER was designed to support a simulation mode,
in which many different parameters (both user- and system-oriented) can
be conveniently set and their effects on filtering can be quickly analyzed.

4.1 Baseline Experiments

To establish realistic performance levels to be expected from SIFTER, a set
of experiments was conducted with six actual users. In these experiments
(referred to as baseline experiments), the objective was to determine how
normalized precision and recall are affected when different users utilize
SIFTER with and without learning. It is natural to expect the performance
to improve with learning. However, the extent of the improvement is also
important in justifying the additional computational overhead due to the
incorporation of learning. Three members of our research group and three
Ph.D. graduate students in computer and information sciences participated
in this study. Each user received a brief tutorial (five minutes) on major
SIFTER features. Users were then requested to run SIFTER for 40 ses-
sions. For each session, SIFTER presented users with 20 new documents.

In Figures 4–7, we present detailed results from a single session with
user 1 (a Ph.D. student). These results are used to explain the important
features in the resulting plots and how these are used for analysis pur-
poses. One of the main features in Figures 4 and 5 is that normalized
precision and recall are highly oscillatory. The primary reasons for such
oscillation are the initial latency of learning the user profile as well as
variability of the document stream from session to session. For SIFTER to
learn the relevance of a particular class, a number of relevance feedback
iterations are required on documents belonging to that class. However, in
the early period of use, the likelihood of encountering documents from
previously unseen classes is very high. This produces the initial fluctua-
tions from session to session. Another factor has to do with the variability
of the document stream in terms of the number of relevant documents. If
there are no relevant documents in the stream, a case that is not uncom-
mon in filtering, both normalized precision and recall (as given by Eqs. (1)
and (2)) are undefined. Hence, these equations were slightly modified so
that the highest defined value would be 0.95, and the lowest would be 0.
The complete absence of relevant documents (a case for which filtering is
not meaningful) was made to generate a value of 1.00. Hence, the tallest
spikes in Figures 4 and 5 actually represent cases where there were no
relevant documents in the stream.

Even in the raw oscillatory data (Figures 4 and 5), the significant general
improvement of performance with learning is apparent. However, to obtain
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a clearer picture the raw precision and recall data were smoothed by
averaging over every five consecutive sessions, after the removal of data for
sessions in which no relevant documents were present. Figures 6 and 7

Fig. 4. Raw data showing normalized precision for user 1. Solid line: with learning; dotted
line: without learning.

Fig. 5. Raw data showing normalized recall for user 1. Solid line: with learning; dotted line:
without learning.
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show such smoothed precision and recall performances for user 1. The
general improving trend and the high terminal performance are evident
from these figures. To reduce redundancy and improve clarity, henceforth

Fig. 6. Smoothed data showing normalized precision for user 1. Solid line: with learning;
dotted line: without learning.

Fig. 7. Smoothed data showing normalized recall for user 1. Solid line: with learning; dotted
line: without learning.
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only smoothed results will be presented. Furthermore, since normalized
recall and precision plots follow similar trends (see Figures 6 and 7), only
the latter will be presented as a performance measure for filtering.

Results from the experiments involving the five other users are pre-
sented in a compact form in Figure 8. The major outcome to note is that in
all cases improved performance was achieved when the system learned a
user profile and applied it to filter the incoming data. In particular, the
system was found to provide a very high degree of filtering performance in
four out of six cases, reaching as high a value as 0.9 or better. In almost all
cases, about 15–20 sessions were required before performance stabilized to
a steady increase. This latency can be attributed to the fact that a sufficient
number of feedback iterations are necessary before the system can fully
acquire the user profile.

Fig. 8. Smoothed data showing normalized precision for users 2–6. Solid line: with learning;
dotted line: without learning.
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The variability of the filtering performance achieved with different users
deserves some comment. A closer look at the log files revealed that the
degree of interest in the different classes varied from user to user. Certain
users were found to have very definite interests, as reflected by the
relevance factors 0.9–1.0 for the relevant classes and 0.0–0.1 for the
remaining classes. We refer to such users as discriminatory users. For
other users, the interest levels hovered around 0.4–0.6 for many classes,
meaning that they were uncertain and somewhat nondiscriminatory in
their preferences. It is intuitively clear that the effect of filtering is
expected to be more pronounced for discriminatory users than for nondis-
criminatory users. This was corroborated by the experimental results. The
relationship between user discrimination and filtering performance is
further explored in Section 4.2.

4.2 Simulation Experiments

The previous set of experiments provided a good understanding of the
operation of the filtering system with real users. Several additional exper-
iments were necessary, however, to clarify how users’ roles (e.g., varying
discrimination levels) and system-oriented parameters (e.g., the number of
document classes) influence filtering performance. Conducting many exper-
iments with actual users is expensive and, in terms of time requirements,
can be impractical. Simulations can aid in investigating the influence of
certain parameters that cannot be easily or practically tested. Hence, a
simulation mode was included in SIFTER. In this mode, a user is repre-
sented as a profile with appropriate relevance values for the various
classes. Our approach to simulation experiments, using realistic user
profiles and documents, is highly similar to numerous studies conducted in
IR that do not directly deal with users. However, to have further confidence
in simulation results, we performed a correlation study between the results
obtained in simulations and experiments with real users.

4.2.1 Correlation with Baseline Data. To start with, several users were
asked to provide written descriptions of the areas they were interested in.
These descriptions were not used in the baseline experiments but were
used to create a simulation of the users. For example, to produce the
simulated outcomes shown in Figures 9 and 10, a user model d (see the
discussion in Section 3.3) was created based on the actual topical areas
user 1 was interested in. Two separate experiments were then conducted
with the same document set, one with the real user and the other with the
simulated one. In the latter case, relevance values were probabilistically
assigned to individual documents, based on the elements of the simulation
model d. As can be seen from Figures 9 and 10, a high degree of correlation
exists between results with the actual and the simulated users. The
Pearson’s correlation coefficient was 0.89 for normalized precision and 0.83
for normalized recall. Analysis based on information collected from other
users also produced strong correlations.

A Multilevel Approach to Intelligent Information Filtering • 389

ACM Transactions on Information Systems, Vol. 15, No. 4, October 1997.



4.2.2 User-Oriented Experiments. To analyze how users can directly
influence filtering, several experiments were conducted where the depen-
dent variables were user-oriented. Here, we present the results from three
such experiments.

Fig. 9. Smoothed normalized recall data for user 1. Solid line: actual; dotted line: simulated.

Fig. 10. Smoothed normalized precision data for user 1. Solid line: actual; dotted line: simulated.
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Varying Levels of Discrimination. Using d as the simulated user model
in SIFTER, three different users were created: discriminatory, moderately
discriminatory, and nondiscriminatory. The same four classes were selected
(i.e., “representation and semantics,” “rule,” “knowledge,” and “heuristics”;
see Figure 3) for all three users, while the relevance factors given to
individual classes were varied to indicate different levels of discrimination.
In the discriminatory user model, all four classes received a weight of 1.0.
In the moderately discriminatory user model, the first two classes were
given a value of 1.0, and the last two classes were given a value of 0.7. In
the nondiscriminatory user model, the values assigned to the four classes
were 0.65, 0.6, 0.7, and 0.6 respectively. For all three users, the remaining
classes had zero relevance factors. In Figure 11, we present a comparison of
the filtering outcome of the three user models, with the profile-learning
mode turned on. As can be expected, the discriminatory user model pro-
duced the best performance among the three models. Another related and
more interesting observed outcome was that, after the latency period, the
discriminatory user model stabilized at a high level of performance, while
the other two models continued to display oscillatory behavior. A possible
explanation for such oscillatory behavior is the difficulty in ranking docu-
ments accurately when differences in interest levels in classes are not
large. Although, theoretically, SIFTER’s profile acquisition procedure can
learn to distinguish even small differences among interests, in practice,
such learning may require a large number of feedback iterations. The
results achieved with the discriminatory user model closely matched the
best outcomes of the baseline experiments: a steady rise to the maximum

Fig. 11. Normalized precision data for three categories of users. Solid line: discriminatory;
dotted line: moderately discriminatory; dashed line: nondiscriminatory.
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performance level followed by little or no oscillatory behavior. Similarly,
the results achieved with the other two models were similar to the worse
cases found in the baseline experiments: an increase in performance after
the latency period followed by frequent oscillations.

Amount of User Feedback. Requiring the user to provide feedback for a
large fraction of documents implies an increased burden on the user in
terms of the number of documents to be read. At the same time, increased
feedback results in better performance and lower latency time. In the
experiments reported in Figure 11, the worst performance was found in the
nondiscriminatory user case. It is for this type of user that the improve-
ment in performance with increased user feedback is expected to be
significant. To validate such a claim, the nondiscriminatory user model (as
in Figure 11) was used in two different modes: standard feedback and
increased feedback. In the former case, 7 documents out of 20 were given
feedback in each session. For the increased-feedback case, all 20 documents
were given user feedback. Due to space constraints, the results of this
experiment are not presented graphically. However, to summarize, three
significant improvements were observed in the outcome for the increased-
feedback model. First, there was a steady increase in normalized precision
to 0.9. Second, this increase was reached in less than 10 sessions (the
latency period), and therefore, the latency period was successfully short-
ened by increasing the amount of user feedback. Finally, beyond the
latency period (i.e., after 10 sessions), the outcome never fell below 0.85
and showed only minor oscillatory behavior. In contrast, the standard-
feedback model resulted in a latency period of about 15 sessions, with the
highest precision value of about 0.77, and with continued oscillatory
behavior.

Nonstationary Users and Shift Detection. Several experiments were also
conducted to analyze the operation of the shift detection module, that is,
the rapid adaptation and recovery in response to significant changes in
users’ areas of interest. In the following, we present the results of one such
experiment. For other experiments involving user interest shifts in a
different filtering scenario (i.e., filtering LISTSERV emails), the reader is
referred to Lam et al. [1996]. Keeping all other parameters constant, all
experiments were conducted in two modes: one with the shift detection
module and one without. As changes in interest are more likely to occur in
long-term use of the system, experiments were conducted over 250 sessions.

In the experiment being reported, a moderately discriminatory user
profile (i.e., d) was used. It was assumed the user held high interest in
information retrieval and low to moderate interest in other classes. So, in
d, classes 2 and 9 (refer to Figure 3) were set to 0.95 and 0.9 respectively,
and all other classes were initialized to values ranging from 0.1 to 0.5.
After session 150, to simulate a shift in user interest to the area of
distributed operating systems, the value for class 17 was increased from 0.5
to 1.0, and the value for class 25 was increased from 0.4 to 1.0. The interest
values for classes 2 and 9 were assumed to drop to 0.5.
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As seen from Figure 12, the normalized precision of both trials reached
above 0.7 just before the shift occurred (iteration 150). Just after the shift,
the precision of the system without the shift detection module began to
drop. At iteration 250, the precision was less than 0.5. The reason for such
poor performance is that the system failed to recognize the loss of user
interest in classes 2 and 9 (which used to be highly relevant classes).
Hence, it continued to present documents from these two classes at the top.
In contrast, the system equipped with the shift detection module showed a
much better filtering performance under the same user scenario. All shifts
involving classes 2, 9, 17, and 25 were successfully detected. In particular,
the downward shift for class 2 was detected based on just four relevance
feedback iterations after the shift (at iteration 151). The shifts correspond-
ing to the other classes were all detected by iteration 196. The upward
shifts required a longer detection time due to the fact that the degree of
these shifts was not as large as the downward ones in this experiment. As a
result of these successful shift detections, the system was able to discover
the new user profiles. This, in turn, resulted in a higher normalized
precision value of 0.75 at iteration 250. The precision improvement of the
shift detection at iteration 250 was about 50% and showed an inclination
for further improvement.

4.2.3 System-Oriented Experiments. To analyze how various system
parameters can influence filtering performance, two additional sets of

Fig. 12. Normalized precision for a nonstationary user. Solid line: with user interest shift
detection; dotted line: without user interest shift detection.
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simulation experiments were conducted with SIFTER. The first involved
the size of the document stream (i.e., the number of documents presented to
the user in each session), while the second was concerned with the number
of document classes.

The Size of the Document Stream. Three document stream sizes (10, 20,
and 40) were chosen for experimental study. For each of these sizes, several
sessions were run maintaining the same moderately discriminatory user
model described earlier and a constant number of documents receiving
feedback (7). Once again, we omit graphical presentation of the results due
to space constraints and instead describe the outcome qualitatively. It was
found that, during the latency period (the first 15 iterations), sessions with
a stream size of 10 produced the best average normalized precision (0.81),
and sessions with a stream size of 40 produced the worst average normal-
ized precision (0.68). The sessions with 20 documents produced an average
normalized precision of 0.64. This is not unexpected, since in the early
period the profile contains very little information about the relevance of the
classes, and increasing the number of documents per session only increases
the likelihood of encountering documents from a wider variety of classes. In
the postlatency period, however, the 40-document sessions generated the
highest average precision value of 0.92; the 20-document sessions gener-
ated an average precision value of 0.76; and the 10-document sessions
generated an average precision value of 0.81. With an increasing number of
sessions, the number of different classes encountered increased, and this in
turn contributed to the improvement in the user profile in the 40-document
sessions. Another interesting result we noted was that the 40-document
sessions in the postlatency period produced more consistent results than
the sessions with fewer documents. The standard deviation of performance
in the 40-document sessions in the postlatency period was 0.05, whereas in
the 20-document sessions it was 0.24, and in the 10-document sessions it
was 0.19. This suggests that the user profile learned in 40-document
sessions was very robust.

The Number of Document Classes. In the filtering model proposed in
this article, the user profile is learned over a document classification space
and not directly over documents. Hence, the size of the classification space
(i.e., the number of document classes) can have a significant influence on
filtering. A small space would mean fewer classes and broader scope per
class, implying a weak relationship between class centroids and member
documents. A large number of classes would correspond to smaller classes,
implying a strong and perhaps more accurate relationship between the
class centroids and member documents. The final set of experiments
concerned an investigation of the relationship between the size of classifi-
cation space and filtering performance. For these experiments, we selected
three different classification space sizes (22, 41, 62) and utilized SIFTER’s
relevance feedback mode. We again chose the moderately discriminatory
user model described earlier (Figure 11). The same user model was used for
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all sizes except in the size 22 case, where the class “heuristics” was dropped
as it was not in the classification space.

For all sessions, the document stream size used was 20, and the number
of feedbacks per session was fixed at 7. It was found that increasing the
number of classes (i.e., the size of the classification space) resulted in a
significantly improved filtering performance (Figure 13). Discounting the
influence of latency (the first 15 sessions), we found that size 22 produced
an average precision of 0.75; size 41 produced an average precision of 0.77;
and size 62 produced an average precision of 0.94. In the postlatency
period, the standard deviation of the best performance (size 62) was 0.04,
whereas the standard deviation of the worst performance (size 22) was
0.26. The experimental results showed that with an increased number of
classes the classification resolution is improved, and this in turn leads to
better filtering performance. However, a point of diminishing returns is
soon reached. For example, in this experiment, no significant improvement
in performance was observed when the number of classes was increased
beyond 62. Hence, considering that a large number of classes leads to
inherent computational and learning complexities, an appropriate number
of classes needs to be determined based on the trade-off between perfor-
mance and complexity.

5. FUTURE EXTENSIONS OF SIFTER

In this section, we point out some of the open issues and problems that are
currently being investigated. These relate to the flexibility of the system

Fig. 13. Smoothed normalized precision data. Solid line: with 22 classes; dotted line: with 41
classes; dashed line: with 62 classes.
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with respect to dynamic and changing document streams, the ability of the
filtering system to cater to an individual user’s notion of document classes,
and problems involving collaboration between multiple filters serving dif-
ferent users. The successful resolution of these issues will improve the
overall filtering performance and reduce the a priori effort needed to
customize the system in a given context.

(1) Thesaurus Adaptation: As mentioned earlier, we used the ACM Com-
puting Reviews Classifications Scheme and the ASIS Thesaurus to
choose what we believe to be an adequate thesaurus for the domain of
computer and information science. When such standardized sources are
not available or are not believed to be adequate, there is a need to
incorporate new terms automatically. Standard statistical approaches
exist for automated thesaurus generation [Salton and McGill 1983].
Several other approaches based on machine learning and NLP tech-
niques have also been reported in the literature for automatic term
discovery [Futrelle et al. 1994; Guntzer et al. 1988] and refinement
[Liddy et al. 1994]. Of course, users should also have the option to
introduce new terms to suit their individual needs. Whenever there is a
change in the thesaurus, there is also a need to update the centroids of
the document clusters and/or reclustering.

(2) Classification Scheme Adaptation: Since the document classes are
generated using an unsupervised clustering approach, they may not
correspond to a particular user’s notion of such classes. Hence, an
unnecessarily large number of clusters may be needed to satisfy the
assumption that user relevance is more or less constant across docu-
ments in a given cluster. Work is currently in progress to develop a
variable resolution class adaptation scheme that starts with a small
number of clusters and that splits large clusters depending on the
degree of uncertainty of user feedback over each cluster.

(3) Collaborative Filtering: Preliminary experiments, involving multiple
filtering systems serving multiple users, have strongly indicated that
inadequacy of the initial thesaurus can be effectively overcome through
consultation with other filters over the network. A simple scenario
illustrating this situation is one in which a filter specializing in
computer science documents collaborates with another in the medical
domain to successfully represent and classify documents pertaining to
medical computing. Thesaurus adaptation is only one area where such
collaboration can be desirable. Huhns et al. [1987] described a distrib-
uted document environment where individual user models are used as
filters to control the overall flow of information and to improve re-
trieval. Laskari et al. [1994] discussed the possibility of reducing the
learning effort by transferring knowledge from an expert filter (one that
has been running for a long time) to a novice (one that is newly
initiated).
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6. CONCLUSIONS

Information filtering, that is, ranking and presenting incoming documents
according to a particular user’s interests, is a user-oriented service whose
importance can only increase dramatically as more and more users begin
utilizing the vast information resources available via electronic media. To
provide effective user-oriented filtering services, uncertainties associated
with the representation and categorization of documents as well as user’s
interests have to be dealt with, and this requires integration of techniques
from different areas such as information science and machine learning. In
this article, we first discussed a general model for an information-filtering
system that describes the broad functionalities desired of various sub-
systems. The model is general enough to permit the use of any preferred
method for implementing the functionalities in a given context. A particu-
lar implementation of the system, called SIFTER, is also described, and is
used to filter computer and information science technical documents. The
present working version of SIFTER involves application and integration of
several well-known techniques for document representation, clustering,
user profile learning, and detection of changes in users’ interests. Studies
involving both real users and simulated users have been presented to
illustrate the performance of SIFTER (as measured by well-established
criteria such as normalized precision and recall) and the effects of various
design parameters on the performance. Future extensions, including on-
line adaptation of thesauri, adaptation of the classification tree, and
collaboration between multiple filtering systems have also been discussed
briefly. The general modular nature of the overall model permits the
seamless integration of such functionalities in the future when deemed
necessary.

Our current interpretation of the performance of SIFTER is that it
performs very well, according to objective criteria such as precision and
recall, when the users are reasonably familiar with the domain of informa-
tion and are motivated to provide relevance feedback at the beginning of
the learning process. The users tested had no difficulty in using the system
and were able to understand intuitively the reasons for any deviation from
their expected performance quite easily. Of course, user studies at a much
larger scale are needed to validate any usability claims for SIFTER,
particularly for lay users. However, in view of its success in the experi-
ments performed and the urgent need to at least ameliorate the effects of
information overload, the authors believe that such filters will be used
widely in the coming years.
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