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ABSTRACT
Due to increased specialization and experimentation, the volume
of biomedical literature is rapidly increasing, where the current
modalities of search and retrieval system can no longer support
effective and efficient knowledge discovery. Standard information
retrieval systems such as PubMed make assumptions as to users’
prior knowledge and expect them to formulate a proper query term
for the information they are looking for. There exist user feedback
mechanisms to help users reformulate their queries, which still as-
sumes that users know how the search results could be effectively
narrowed down by way of additional keywords and/or filters. As an
alternative, we revisit the Scatter/Gather information retrieval par-
adigm. Specifically, we explore a real-time dynamic cluster-based
document browsing approach in the biomedical domain, discuss
the system architecture involving keyword discovery and dynamic
clustering, and present a working prototype with a relevant use
case in comparison with a standard ranking-based information
retrieval system.

CCS CONCEPTS
• Information systems → Users and interactive retrieval; •
Computingmethodologies→Cluster analysis; •Applied com-
puting → Health informatics.
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exploratory search, unsupervised learning, information retrieval,
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1 INTRODUCTION
Automated clustering of scientific publications and spatial encoding
of information visualization techniques is of emerging importance
for digital libraries [24]. This is especially true for biomedical li-
braries. The current ranking-based retrieval model assumes that
users have a clear understanding of the information need and thus
could formulate a proper query that facilitates a ranked list of var-
ious information types that are in descending order of relevancy.
However, prior understanding of terminology or information space
structure may not exist [29, 31]. Moreover, even with a properly
formulated query in biomedicine, a flat list of thousands of results
does not enable discovery of latent information, logical connec-
tions among concepts, or transitive properties within a particular
information space; processes of which can be automated and pack-
aged as a real-time generative model to aid researchers in their
information exploration and hypothesis generation.

The current mode of access, generally speaking, is a look-up
procedure, similar to searching an index in a large textbook. To
ultimately improve access, it seems intuitive to provide a table of
contents metaphor for users to explore what topical content is in a
collection and iteratively reach a more specific information target;
a process called exploratory search[12, 30]. For example, this par-
adigm is also utilized by the 2012 ACM Computing Classification
System (CCS)1 whereby you can generate codes to classify confer-
ence documents and also iteratively reach highly relevant literature
based on topical content. Such an interactive ontology would be
tremendously useful for Medical Subject Headings (MeSH) given
that PubMed is arguably the largest biomedical literature base in
1https://dl.acm.org/ccs/ccs.cfm

Session: 13 Deep Learning III ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA.

390

https://doi.org/10.1145/3307339.3342191
https://doi.org/10.1145/3307339.3342191
https://dl.acm.org/ccs/ccs.cfm
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3307339.3342191&domain=pdf&date_stamp=2019-09-04


the world, for example. These classification models serve as very
powerful filtering tools to narrow the focus of a search. However,
there is also the need to build robust tools on top of these paradigms
that model spatial semantics and latent information structure in
order to enable discovery and generate hypotheses.

In this work we describe early stage development of a prototype
system for exploring topical content in the biomedical literature.
The organization of this work is as follows; in the related work
section we discuss the benefits and limitations of other exploratory
information retrieval systems in biomedicine and propose a revival
of the Scatter/Gather dynamic clustering paradigm. In the system
architecture and description sections we discuss the data flow from
server to client, data processing, and visualization. Lastly, we pro-
vide a use-case for retrieving information on genomic editing and
briefly contrast this with a conventional search in PubMed.

2 RELATEDWORK
In this section we will briefly introduce previous work on ex-
ploratory search systems and the various modalities they employ.
On the user end, classic retrieval optimization involves incremen-
tal feedback to search systems in terms of revised queries. How-
ever, practice shows that the added step of revising queries is non-
desirable [13]. Moreover, some evidence suggests that users spend
the least amount of time on queries and focus more on results and
facets or filters of retrieved information [10]. Other research indi-
cates that complex search tasks may result in longer queries which
implies that more thought or prior knowledge must go into such
a query [5]. These findings indicate that exploratory information
systems can be a more intuitive model when search intent is unclear.
User feedback is essential, however, revising queries appears to be
an inferior method.

Routsalo et al. [20, 21] developed a system called SciNet, specifi-
cally targeting interactive user intent modeling. User intent is often
vague, and proper query terms may not be known or provided
by a user. SciNet attempts to solve this problem by an interactive
visual interface. The system starts with a user query and returns a
wide spectrum of keywords to suggest potential intents on a radar
chart-like screen in addition to a standard ranked list of documents.
On the radar screen, users can give their feedback by moving any
keywords they find relevant to the center of the radar, and vice
versa. Given the feedback, the system updates the estimate of the
user intent and dynamically updates the results.

Sciascio et al. [22] developed another system called uRank. The
system provides a keyword list summarizing a document collec-
tion and a document list showing a ranked list of documents with
stacked bars of relevance scores for each keyword. The users choose
keywords from the keyword list and, for each keyword, its weight
can be adjusted by a slider. The rankings of the documents are
dynamically changed reflecting the chosen keywords and their
weights. The stacked bars of relevance scores help the users to see
how much each document is relevant with respect to individual
keywords.

Another approach is Scatter/Gather [3, 4, 8]. Scatter/Gather is a
browsing-based information exploratory model and presents top-
ically coherent groups (clusters) of documents with descriptive
textual summaries as opposed to a ranked list of documents. In

other words, documents are “scattered” into topical clusters for
browsing. The users then browse the generated clusters and “gather”
the ones that are interesting or relevant. Based on the selection,
the documents in the selected clusters are re-clustered and pre-
sented to the users again. This process is repeated until a user feels
they have identified their information target. Figure 1 depicts the
Scatter/Gather browsing paradigm.

Breast neoplasms

Breast 

Neoplasms, Male

Carcinoma, 
Ductal, Breast

Carcinoma,

Lobular

Triple Negative 
Breast Neoplasms

Etiology Genetics Immunology Epidemiology

Scatter

Gather

Scatter

Gather

Figure 1: Illustration of Scatter/Gather browsing para-
digm [4] for the breast cancer literature.

This particular example starts with a query “Breast Neoplasms”
to form a document collection and scatters four topical clusters
(i.e., Breast Neoplasms Male, Carcinoma Ductal Breast, etc.). The
user then gathers two clusters of interest: Carcinoma Ductal, Breast
and Triple Negative Breast Neoplasms, then four new and more spe-
cific clusters (i.e., Etiology, Epidemiology, etc.) are identified within
the selected clusters and gathered/scattered again on Immunology
and Genetics, indicating the users’ interest in immunologic and
genetic information in relation to the specified forms of breast
neoplasms selected in the first scatter phase. This Scatter/Gather
browsing is particularly helpful in cases where a user is unsure
about formulating a specific search query because it allows him/her
to explore the general content of a collection and iteratively refine
their information need based on the relationships among concepts.

Scatter/Gather is built on the cluster hypothesis [17], which
states that “closely associated documents tend to be relevant to the
same requests”. Because multiple documents are clustered into topi-
cally related groups, the Scatter/Gather browsingmodel may reduce
user burden by providing a dynamic table of contents metaphor
as opposed to querying a collection with vague intent and then
scrolling through a potentially large set of individual documents
which we analogize to searching a vast textbook-like index.

The effectiveness of Scatter/Gather has been empirically investi-
gated by several studies. Hearst et al. [8] reported that relevant doc-
uments for a given query tended to be clustered together and that
the users were able to choose the right cluster with the largest num-
ber of relevant documents in more than 80% of cases. Gong et al. [6]
also reported that this model was found to be particularly helpful
for search tasks unfamiliar to users. Ortiz et al. [16] examined a
more fundamental question of the effectiveness of cluster-based
browsing models and systematically studied various parameters
affecting cluster quality.
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Despite its potential benefits, a cluster-based browsing search
interface has not been extensively studied for biomedical literature
primarily due to two challenges. First, clustering must be fast for
an arbitrarily large number of documents. The Buckshot clustering
algorithm [4] proposed with Scatter/Gather runs in time O(kn)
where k is the number of clusters, but linear time is still not fast
enough to execute clustering on the fly for a large document col-
lection. A constant time algorithm was also proposed [3], which
builds a static hierarchy of clusters in advance in an offline process.
However, appropriate grouping of documents will change both for
an initial query and for chosen clusters [8], and thus a static cluster
structure is often sub-optimal. The second challenge is to develop
an intuitive and effective user interface. In the past, much work
adopting Scatter/Gather simply used text-based interface, and it
is unclear how document clusters and Scatter/Gather mechanisms
are best visualized.

3 DYNAMIC CLUSTER-BASED BROWSING
This section describes the design and implementation details of
our dynamic cluster-based browsing system, DCB2. We adopt the
Scatter/Gather paradigm for its potential and tackle the open issues
concerning real-time clustering, dynamicity, and effective interface
design.

3.1 Overview
Figure 2 depicts the architecture and data flow of DCB2, where
the dotted lines indicate iterative processes by a user. The server
side system runs on Amazon Web Services Elastic Cloud Compute
(AWS EC2)2 and is implemented by the Flask web framework.3
The document collection was downloaded from Public Library of
Science (PLOS), indexed by Apache Solr,4 and locally resides in
the server for efficiency. The client side is built on a JavaScript
visualization library D3.js.5 For interactive and iterative browsing,
the client uses Ajax to asynchronously communicate with the server
which eliminates the need to reload the web page as content is
dynamically explored. The following sections describe the core
components of the system in more detail.

Apache Solr

Python (Flask) JavaScript (D3)

Client

scatter

gather

 query (optional)

Server

scatter

gather

topical

clusters

PLOS retrieve

cluster

recluster

Figure 2: System architecture and data flow.

2https://aws.amazon.com/ec2/
3http://flask.pocoo.org
4http://lucene.apache.org/solr/
5https://d3js.org

3.2 Initial Data Retrieval and Clustering
DCB2 starts with a text box for a user query as with other keyword-
based search systems (Figure 3), although our system can initiate
information retrieval with or without a query. When a query is
given, it retrieves N latest articles satisfying the query. When no
query is given, it simply retrieves N latest articles in the collection
without considering any particular topic. We fix N to a constant
value so that clustering is completed in a constant time regardless
of a query, facilitating real-time processing. The rationale behind
this design is random sampling in order to deal with the potentially
large number of documents. This is similar to the idea of mini-batch
k-means [23]. Mini-batch k-means first performs k-means cluster-
ing on a random subset of data to compute cluster centroids and
then determines the membership of all the data points. Mini-batch
k-means is reported to converge to near-optima several orders of
magnitude faster than standard k-means. Instead of complete ran-
domness, however, our system favors recency as we are generally
interested in more recent information in the biomedical domain.
Although limiting the number of documents by N will certainly
influence the resulting cluster structure, we assume the effect is lim-
ited for a largeN . We will investigate the validity of this assumption
in Section 4.

Figure 3: DCB2 start page.

As for query language, DCB2 can understand a wide range of
query syntax accepted by Solr, such as Boolean queries, range
queries, phrases and wild cards. However, we expect more gen-
eral queries since our system focuses on exploratory search where
users’ search intent is not yet clear. Currently, the system retrieves
titles, abstracts and body texts and simply concatenates them, but
other data including journal names, authors and affiliations are also
indexed and readily available for future use. Note that the search
field (default is “all fields”) and the number of clusters (default is
“10”) can be specified by the search page for convenience.

After retrieving the article information, the system executes
the following processes in this order, which was reported to be
beneficial for constructing high quality clusters [16].
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• Keyword discovery: The system first identifies prominent
terms to represent the retrieved document set. For this pur-
pose, we adopt a statistical approach called Vocabulary Clus-
ter Generating System (VCGS) [15]. VCGS discovers key-
words based on term and document frequencies. Using only
the discovered keywords, the document set is represented as
a term-document matrixM with tf-idf term weighting [26].
This process greatly reduces the data size.

• Latent semantic analysis (LSA) [11]: To furher reduce the
dimensionality of the term-document matrixM and to dis-
cover latent associations among keywords, LSA is applied
toM . LSA is a matrix decomposition technique that extracts
and represents the contextual usage of terms in a collection
of documents. The transformation of a full featured matrix
to a dimensionally reduced matrix helps reveal implicit se-
mantic associations between documents. The dimensionally
reduced matrix can be obtained by first decomposing Mfi
into U ΣVT , where U and V are orthogonal matrices and
Σ is a diagonal matrix with the eigenvalues of the eigen-
vectors in descending order. The first n rows of matrix V
(corresponding to the n largest singular values in Σ) is the
n dimensionally reduced matrix. Currently, we empirically
use 50 as the number of components (dimensions).

• Clustering: The document set is then topically clustered for
presentation. We use the popular k-means++ algorithm [1],
wherek is set to 10 by considering the trade-off between read-
ability and informativeness. Alternatively, users can choose
the value of k from 2 to 10 in the start page.

After these processes, the system generates a set of keywords to
describe each cluster for the next visualization stage. More precisely,
the centroid of each cluster in the LSA-reduced space is transformed
back to the original term-document space and is represented as
a term vector. From the vector, keywords with n highest tf-idf
values are selected as the description of the cluster. In addition, the
centroids in the LSA-reduced space are transformed to coordinate
space by t-Distributed Stochastic Neighbor Embedding (t-SNE) [28]
and plotted in 2D. Only the descriptions (keyword set) and 2D
coordinates for the clusters are sent to the client for efficiency, and
other information is retained as session data on the server.

3.3 Visualization
We designed a preliminary Scatter/Gather browsing interface and
developed a functional prototype.6 We relied on Shneiderman’s
visual information seeking mantra [25]—overview first, zoom and
filter, then details on demand—for the design process to provide
overviews of clusters and to show details according to users’ interest.
The design incorporates two visualization panels and buttons for
Scatter/Gather (Figure ). The left panel (hereinafter cluster panel)
displays clusters processed on the server-side and the right panel
(hereinafter document panel) presents documents that belong to
the selected clusters in the cluster panel.

The cluster centroids correspond to the coordinates in semantic
space constructed by t-SNE, which reflect their relative semantic
relatedness. In the center of each cluster, representative keywords

6http://34.227.40.198/dcb2_beta/

Figure 4: Initial search results for query “breast neoplasms”
by DCB2 presented as topical clusters.

are displayed, as well as the number of documents in parenthe-
ses. The area of the cluster (circle) is proportional to the number
of documents. If users move their mouse pointer over a cluster,
corresponding bibliographies of documents (article titles, author
names, journal titles, and publication dates in this order) with hy-
perlinks to the article registered in PubMed appear temporarily in
the document panel. Users can click a cluster(s) of interest for the
Gather process and the references will be displayed in the document
panel until the cluster is deselected. Another click can deselect the
cluster(s). If multiple clusters are selected, users can navigate the
corresponding documents for each cluster through the tabs located
at the top of the document panel. The circle in the cluster panel and
its corresponding tab in the document panel are presented in the
same color to facilitate intuitive navigation. Users can zoom or pan
the visualization panel as needed. By clicking the “Scatter” button,
the chosen clusters of documents are re-clustered (see Section 3.4)
and scattered again. After examining the results, users can either
try a new Scatter or return to the previous step. Users can iterate
through this Scatter/Gather process interactively until they satisfy
their information need.

3.4 Re-clustering
Upon receiving a set of selected clusters for the gather phase, the
system retrieves the document ID data within the clusters from
the session data and performs a scatter phase that involves a series
of processes from keyword discovery to clustering as described
in Section 3.2. One may think that these processes are redundant.
However, it should be stressed that these processes are crucial for
the dynamicity of DCB2 to identify new keywords, which would be
different from the previously identified keywords and, consequently,
should yield more relevant topical clusters. The descriptions of the
resulting clusters and their 2D coordinates are computed in the
same way as previously described and sent to the client. When the
total number of articles in the selected clusters becomes smaller
than a predefined threshold, their bibliographic data are also sent
to the client as well for examination.
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4 EVALUATION
In this section, we first evaluate our sampling-based clustering ap-
proach quantitatively and then walk through the prototype system
with a possible use case to demonstrate how DCB2 could be used
for information seeking.

4.1 Dynamic Clustering
To realize a cluster-based document browsing system for a large
biomedical bibliography database, clustering should ideally be done
in a constant time irrespective of the size of the search result. How-
ever, existing clustering algorithms running in a constant time
typically rely on a pre-computed static hierarchy of categories,
which is not suited for iterative, dynamic cluster-based browsing.

To circumvent the problem, DCB2 uses a simple sampling-based
clustering approach, retrieving only the N latest articles for a given
query. Although the time complexity of the clustering algorithm
itself (k-means) is not constant, the clustering process completes
approximately in a constant time for fixed N . The running time
could be short enough to perform on the fly if N is small. On the
other hand, small N would not produce clusters representative of
the entire search results. Therefore, we empirically examined the
relation between the sample size (number of documents) and the
quality of clusters so as to find appropriate N which could produce
clusters with the quality close to those created from the entire
search results.

4.1.1 Experimental Setups. For this experiment, we needed a data
set in which each document is labeled with a category or class
as ground truth. Following the methodology by Ortiz et al. [16],
we considered Medical Subject Headings (MeSH) major topics as
categories. Specifically, we used the MeSH term “neoplasms by site”
to construct our data set as follows:

(1) On the PubMed website, we used a query "Neoplasms by
Site"[MeSH Major Topic] to retrieve articles on Feb 26,
2019. We restricted the search only to PLOS journals by spec-
ifying journal names so that the resulting data set would
better reflect the characteristics of the PLOS archive. Note
that all the articles annotated with the MeSH terms below
“Neoplasms by Site” in the MeSH hierarchy were also re-
trieved by this query.

(2) All the MeSH terms given to the articles were generalized to
the MeSH terms right below “Neoplasms by Site”. Then, six
most frequent MeSH terms, “Digestive System Neoplasms”
(4,416), “Breast Neoplasms” (2,647), “Urogenital Neoplasms”
(2,313), “Thoracic Neoplasms” (1,770), “Endocrine Gland Neo-
plasms” (1,516), “Head and Neck Neoplasms” (1,413), were
identified and treated as topical categories (the numbers in
the parentheses show the number of articles annotated with
respective MeSH terms). These six categories were chosen
such that each category would have at least 1,000 articles.
After deleting articles annotated with none of these MeSH
terms, 12,530 articles remained.

(3) The same query as above was used to retrieve full-text arti-
cles from the PubMed Central database. From the retrieved
articles, the body texts of the remaining 12,530 articles were
extracted.

There are many criteria for evaluating the quality of clusters.
Among them, we used Adjusted Mutual Information (AMI) fol-
lowing a recommendation by Romano et al. [19]. AMI is based
on mutual information and is a measure of agreement between
true labels and those by a clustering algorithm. It quantifies the
amount of information shared between the two assignments and
it is defined by term probability distributions and the information-
theoretic measure of entropy. AMI is adjusted for chance by using
the expected value of mutual information for normalization.

4.1.2 Results. Figure 5 shows the relation between the number of
sampled documents and the quality of generated clusters in AMI,
where the sample size was gradually increased from 100 to 12,530.
We compared three different data, i.e., titles only (denoted as “Title”),
titles and abstracts (denoted as “Abstract”), and titles and abstracts
and body texts (denoted as “Full text”). One can observe that AMI
shaply improved as the sample size increased up to 2,000 for Title
and Abstract and then it became more or less stable for the rest.
Somewhat unexpectedly, Titles worked comparably with Abstracts,
although using abstracts tended to produce more reliable results.
On the other hand, using full-text data was not as effective as using
titles and/or abstracts, which is consistent with the experiment on
a breast cancer subset of PubMed Central data (BRCA-FULL) [16].
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Figure 5: Relation between the number of documents and
cluster quality in AMI.

Then, we compared the processing time for Title, Abstract, and
Full text. The processing time was measured from loading data to
clustering. The results are shown in Figure 6. Naturally, Title was
the fastest, followed by Abstract and then Full text, and the pro-
cessing time grew rapidly as the number of documents increased,
especially for Full text. Based on these observations, it is recom-
mended to use 2,000 latest articles (i.e., N = 2, 000) and to use titles
and abstracts for constructing topical clusters. We plan to investi-
gate the validity of these parameters also through a user study in
future work.
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4.2 Use Case
As a use case, we considered a query “genomic editing” and il-
lustrates how a researcher would navigate through the literature
using DCB2. Figure 7 depicts the resulting clusters for this query.
The user selects three semantically related clusters based on the
close spatial distance and interest in the concepts of “sgrna” (single
guide RNA), “sites”, “off-target”, “targeting”, and “crispr” (clustered
regularly interspaced short palindromic repeats).

In this instance for example, we imagine a researcher wanting
to understand the landscape of genomic editing technologies by
exploring the highly-weighted concepts and their latent associa-
tions based on spatially encoded information and then mapping
the concepts back to their original publications for review when
desired. Note that Figure 8 also displays the results for an equivalent
query in PubMed Central although an overload of information is
presented in which the user must apply filtering tools, re-formulate
the query, or sequentially scroll through the ranked results and
extrapolate concepts on their own. In contrast, we believe that the
Scatter/Gather paradigm may offer the benefit of treating searching
as learning [7] in a cognitively less demanding modality.

Figure 9 shows new clusters from the resulting Scatter phase.
The user now selects one cluster based on the keywords “disrup-
tion” and “cas9” (CRISPR associated protein 9) which results in
a very small and specific document set on the right-side panel.
The researcher quickly learns that genome editing technologies
may induce downstream effects based on an error-prone repairing
mechanism that leads to mutation and gene disruption and that
methods are being developed to improve the fidelity of the tech-
nology. For example, much work on improving the technology is
already underway[2, 9, 14, 18, 27]

5 CONCLUSION
This paper presented our ongoing work for developing a dynamic
cluster-based document browsing system, called DCB2, for explor-
ing the biomedical literature. Our system adopts the Scatter/Gather

Figure 7: DCB2 gathering clusters for “genomic editing”.

Figure 8: PubMed Central default results for “genomic edit-
ing”.

Figure 9: DCB2 scattered clusters for “comparative ge-
nomics”.

paradigm and focuses on three important dimensions, i.e., real-time
and dynamic clustering, efficient/accurate representation, and effec-
tive presentation. For the first two, we applied on-the-fly keyword
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discovery and proposed sampling-based clustering. For the latter,
we designed and built an intuitive user interface. To demonstrate
the validity of the approach, we examined the relation between
cluster quality and sample size and showed that using around 2,000
documents produced as good clusters as using the entire document
collection with much less processing time. Also, a possible use case
was provided to illustrate the utility of the system. Future work
will examine scalability, building more efficient indices to allow
faster iteration, generating interpretable descriptions for clusters,
and system evaluation involving prospective users.
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