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The impact of the World Wide Web on providing an easy information access is clearly evident in all aspects of today’s life. As
attractive as the information availability is, due to its sheer volume, it creates an information-overload on users. Agent-based collaborative
filtering is a technique used to effectively counter this burden. For agents to collaborate successfully, and maintain an overall progress of
the entire interconnected environment, a governing mechanism is necessary. In this article, we present an economic framework based on
a bidding mechanism for agents to communicate and negotiate with each other, thereby achieving collaborative information classification.
D-SIFTER, a system developed using this economic framework, is described along with various experiments and their results.

1. Introduction

As the World Wide Web (WWW) evolves into a mas-
sive infrastructure for information, the advancement of Web
technologies is becoming a primary interest to industry and
academia. One of the prominent areas of development con-
cerning the Web involves the design and implementation
of software agents, which are defined by Genesereth and
Ketchpel [1994] as, “Software agents are application pro-
grams which communicate with peers by exchanging mes-
sages in an expressive agent communication language.”

Software agents have been developed for diverse appli-
cation domains. Our research is targeted at using Web-
based agents in distributed (or collaborative)1 information
filtering. Each agent in such an environment accomplishes
tasks of representation, classification, sorting, and presen-
tation of incoming documents in an efficient and accurate
manner for its user (also referred to as owner). Thus, agents
in a distributed information filtering environment aim at re-
ducing the information overload of their owners. Through
previous investigations, we have found that a collabora-
tion among filtering agents on the WWW leads to a drastic
improvement in the number of successful classifications
[D-SIFTER 1997].

In order to allow agents to communicate effectively, they
must be organized under a governing system. One attrac-
tive alternative for such a system uses the concept of eco-
nomic framework. This is emphasized by Genesereth and
Ketchpel [1994]:

“As the Internet becomes increasingly commercialized,
we envision a world where agents act on behalf of their
creators to make a profit. Agents will seek payment for
services provided and may negotiate with one another

1 Throughout this article, we will use the words collaborative and distrib-
uted interchangeably.

to maximize their expected utility, which might by mea-
sured in a form of electronic currency.”

This article describes a bidding mechanism which allows
an agent to compute the price of its service (the “bid”) as
offered to others and also to choose a service from a par-
ticular agent, in the context of distributed information fil-
tering. Here, the service offered by an agent (in response
to a request from another agent), involves classifying doc-
uments from the domain of computer science. Specifically,
the paper is organized as follows.

We begin by providing a detailed overview of our previ-
ous work with distributed classification agents. We then de-
scribe economic models and the bidding mechanism. Next,
details of the experiments investigating the effects of vari-
ous parameters are discussed. The paper ends with a brief
description of related efforts, our plans for future work and
conclusions.

2. Previous work

The overall focus of our research is to develop an agent-
based system capable of providing personalized information
services to an user with as little user intervention as pos-
sible. The digital library projects (at Stanford University,
Michigan University, the University of Illinois and Uni-
versity of California-Santa Barbara) were a direct source
of inspiration for this research. It is not our intention to
duplicate the efforts of the digital library initiatives, but
rather to complement them by focusing on the agent-based
filtering aspects, which we believe should be an important
component in any digital library project.

We classify information filtering systems into two
categories: single-agent and multi-agent environments.
A single-agent system called SIFTER [Lam et al. 1996;

 Baltzer Science Publishers BV



156 R.R. Raje et al. / A bidding mechanism for Web-based classification

Sifter Research Group 1997] has been developed and im-
plemented at IUPUI (Indiana University Purdue University
Indianapolis). Our contributions include the enhancement
of SIFTER by creating a distributed multi-agent environ-
ment, called D-SIFTER. This section elaborates features of
both these systems and provides the results of our earlier
experiments with D-SIFTER.

2.1. SIFTER

As stated above, SIFTER (Smart Information Filtering
Technology for Electronic Resources) is a single-agent iso-
lated system dedicated to classify and present the incom-
ing textual documents to its user in an ordered scheme
which is based upon its user’s interests. The interests of its
user are captured in a knowledgebase. This knowledgebase
is made up of many keywords drawn from authoritative
sources such as the ACM Computing Reviews Classifica-
tion Scheme for documents in the domain of computer sci-
ence. SIFTER is composed of three components: a repre-
sentation module, a classification module, and a user profile
learning module.

2.1.1. The representation module
The first component, the representation module, con-

verts documents into structures that can efficiently be parsed
without the loss of vital content. It uses the vector-space
model [Salton 1988] for document representation because
it has been widely tested and is general enough to sup-
port other computational requirements of the filtering en-
vironment. This relies on a thesaurus management sub-
module. At the core of the latter is a set of technical terms
or concepts culled from authoritative sources representing
a given area (presently SIFTER uses ACM Computing Sci-
ence Classification Scheme and American Society of In-
formation Science Thesaurus for filtering documents). The
thesaurus management sub-module is also used for pruning
of common functional terms, as well as several term nor-
malization tasks including synonymy control and singular-
plural form control. The popular tf.idf (term frequency mul-
tiplied by inverse document frequency) technique is applied
to establish the particular degree of importance for each
concept in a document. In the on-line filter application
mode, another table is generated containing the frequen-
cies of all unique terms found in newly arrived documents.
Then the following equation is used to derive appropriate
weights for terms in each document:

Wik = Tik ∗ log(N/nk),

where Tik is the number of occurrences of term Tk in docu-
ment i, Ik = log(N/nk) is the inverse document frequency
of term Tk in the document base, N is the total number of
documents in the document base, and nk is the number of
documents in the base that contain the given term Tk.

2.1.2. The classification module
The classification module consists mainly of two proc-

essing stages: an unsupervised cluster learning stage and a
vector classification stage. During the learning stage, initial
cluster hypotheses [C1, . . . ,Ck] are generated from a repre-
sentative sample of document vectors [S1, . . . ,SN ]. Each
cluster Ci is then represented by its centroid, Zi. During
the classification stage, an incoming document vector V i

is classified into a particular class Ck using the learned
centroids from stage 1. The learning of cluster centroids
is done in an off-line batch mode while classification is
carried out continuously as documents arrive.

A simple heuristic unsupervised clustering algorithm,
called the Maximum-distance algorithm [Tou and Gonzalez
1974], is used to determine the centroids over the document
vector space. The measure used for computing the distance
between two document vectors is the cosine similarity mea-
sure [Salton 1988]. Given two non-null document vectors
X = [x1, . . . ,xt]T and Y = [y1, . . . , yt]T , such a similarity
measure represents the cosine of the angle between them
and is given by
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The distance is then computed as 1 minus the similarity.

2.1.3. The user-profile learning module
The function of the user profile learning module is to

determine the user’s preference for the different classes of
information Ci (i = 1, . . . , k), and prioritize the incoming
documents based on their classes as well as the estimated
user preferences for the classes. To accomplish this task,
the learning agent maintains and updates a simplified model
of the user, based on the relevance feedbacks. The algo-
rithm currently used to learn the user model is based on
a reinforcement learning algorithm studied in the area of
Learning Automata [Narendra and Thathachar 1989] in AI
and Mathematical Psychology communities.

Let di denote the underlying (unknown) expected user
preference (relevance) for the class Ci. The learning agent
maintains and updates two vectors of dimensions equal to
the number of classes. The first is the estimated relevance
probability vector, with elements d̂i (i = 1, . . . ,n), which
is an estimate of di. The second is an action probability
vector p = [pi], such that pi represents the probability of
the class Ci being selected by the filter as the most relevant
class. Both p and d̂ vectors are continuously updated during
the learning process on the basis of user relevance feedback.

The learning algorithm (i.e., the algorithm for updating
p(k) and d̂(k)) is described briefly as follows [Thathachar
and Sastry 1985]. d̂i(k) (i = 1, . . . ,n) at any instant is the
running average of the relevance values given by the user
for documents belonging to class i. Denoting the currently
maximum element of d̂ vector as having the index l, a unit
vector E(k) is created of dimension n whose lth element
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is 1, and whose all other elements are zero. Then Pi(k) (i =
1, . . . ,n) is updated as

pi(k + 1) = pi(k) + η
(
Ei(k)− pi(k)

)
,

where 0 < η < 1 is a suitably chosen step-size. Thus, the
p vector is moved by a small distance towards the optimal
unit vector. The convergence properties of this algorithm
have been well investigated [Thathachar and Sastry 1985].
For more information on either of the three modules, the
reader is referred to [Lam et al. 1996; Mostafa et al. 1997;
Sifter Research Group 1997].

2.2. D-SIFTER

In SIFTER, if an agent cannot classify a document due
to its inadequate knowledgebase and/or limited expertise
and/or less comprehensive training set of documents, it
marks that document as a failure. This is an undesirable sit-
uation. D-SIFTER (Distributed SIFTER) provides the nec-
essary mechanism to prevent such a situation, by allowing
an agent to collaborate with other agents. This collabora-
tion helps to achieve better classifications of the documents
for users. Using SIFTER as the basis for document repre-
sentation and classification, we implemented D-SIFTER.

2.2.1. Implementation using Java-RMI
We chose to implement D-SIFTER in Java [Cornell and

Horstmann 1997; Flanagan 1996; Siyan and Weaver 1997]
because of its portability, object-oriented features, APIs for
GUI and RMI (Remote Method Invocation). The collab-
orative actions in D-SIFTER are implemented as remote
calls over the network using RMI.

2.2.2. System organization
As D-SIFTER enhances SIFTER, it was logical to base

its design on the model of SIFTER. The representation and
classification modules of D-SIFTER are identical to their
counter-parts from SIFTER.2 The collaborative features of
D-SIFTER are provided by the distributed module. This
module is responsible for the communication among agents.
Our research involves the exploration (through experimen-
tation) of the effective paradigm for the distributed module.
The next subsection describes two such paradigms, which
we have incorporated for the agent-based distributed mod-
ule.

2.3. Collaborative paradigms

Figure 1 shows the architecture of the distributed mod-
ule. Currently, all agents are identical and they continu-
ously perform the task of document classification on be-
half of their owners. The communication among different
agents takes place in an indirect manner through a common
server. It should be noted that the role of the server is just to

2 The incorporation of the user profile learning module is currently under
investigation.

Figure 1. Distributed module communication architecture.

provide a channel for broadcasting the relevant information
to all the agents. The classification, ranking and presenta-
tion of documents is carried in a distributed fashion by the
agents and the server is not responsible for executing any
of these tasks. With the intent of studying collaborative
ideas, we chose to implement two types of collaborative
schemes: the single- and multiple-opinion models. Each
agent in both models follows the same general algorithm:3

1. Attempt to classify the next document.
2. If successful, present the result

to the owner.
If not then request remote assistance.

3. If a pending remote request exists
then check its status.

If the result is available, fetch it and
present it to the owner.

4. Check to see if another agent
needs assistance.

If so, help that agent.
5. Go back to 1.

While the general algorithm is similar, the difference
arises from the number of remote collaborators which are
allowed to assist a requesting agent. The single-opinion
model allows only one remote agent to assist another agent
while the multiple-opinion model allows more than one
remote agent the chance at remote collaboration.

2.3.1. Single-opinion
The strength of this model lies in its simplicity. It is

easy to implement and as only one remote agent is chosen
to assist with the classification, the necessary turn-around
time for remote collaboration is small.

The simplicity of the model also results in its drawbacks.
The single-opinion model allows only one agent to perform
the remote service. Currently, the collaborator is chosen
randomly. This can be a serious drawback causing the
document never to be classified. Also, even if the remote
agent can perform a classification, how can the owner be
assured that he/she received the most accurate classification
that was possible?

3 For the complete algorithms, see [Raje et al. 1997c].
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2.3.2. Multiple-opinion
The multiple-opinion model aims to compensate the

drawbacks of the single-opinion model. It represents the
real-world by allowing different agents (with varied exper-
tise) to participate in the collaboration. Such a collabo-
ration will lead to better classifications [D-SIFTER 1997].
Also, this model elegantly handles the discovery of new
keywords, which form the knowledgebase. By providing
agents with the facilities to communicate with others, key-
words can be passed along which will help in improving
knowledgebases of some agents and reducing the need for
remote assistance. Also, as with any distributed system,
more agents lead to a more stable environment, thus fail-
ures can be handled gracefully.

Most difficult problems of this model involve managing
multiple remote agents. The critical issues include waiting
for all agents to complete their classification, waiting for all
agents to produce a bid (in a market driven system), and an
added overhead of determining the most appropriate agent’s
classification (also known as selection criteria).

2.3.3. Single- and multiple-opinion preliminary results
We ran experiments using each model to observe the

change in the number of successful classifications. Results
from both models showed an increase in the total number
(local and remote) of classifications that were successful.
The single-opinion model showed an improvement of 42%
while the multiple-opinion increased the classifications by
as much as 61% [D-SIFTER 1997].

Another experiment involved only the single-opinion
model. When only one remote agent is requested to assist,
we decided to add an additional constraint called, time-out
period, i.e., how long should an agent wait to obtain the
remote classification? We studied the relation between the
time-out period and its effect on the total number of suc-
cessful classifications. The results were as expected: the
number of successful classification increased until the time-
out period reached a peak value. After the peak value,
the number of successful classifications did not change
[Raje et al. 1997b]. For more information on either the
single- or multiple-opinion models, the reader is referred to
[D-SIFTER 1997].

As stated earlier, as the Internet becomes more com-
mercialized, users will want their agents to act only for
compensation. This approach is best described within a
market-based environment. The next subsection outlines
the economic models we have used in D-SIFTER.

2.4. Economic models

As stated in the introduction, we are interested in investi-
gating the suitability of economic models for collaborative
information filtering. To explore this area in detail, we
have implemented two economic models, user-centric and
money-centric, for the single-opinion version of D-SIFTER.
Throughout the rest of this paper, the term information dol-

lar or money refers to a form of electronic currency that is
agreed upon by the agents/users.

In the user-centric model, the quality of service offered
by the agent to its owner is the top priority. The agent
performs remote services only if it has no documents to
classify for its owner.

The money-centric model takes a greedy approach to-
wards remote assistance. In this model, an agent performs
remote assistance whenever it sees an opportunity.

We conducted many experiments with both these mod-
els. As expected, the agents in the money-centric model
gained money quicker and it took much longer for their
local documents to be classified. The details of these ex-
periments and their results are described in [Raje et al.
1997a].

3. A bidding mechanism for a multiple-opinion
scenario

There are many possible approaches to the multiple-
opinion scenario. For example, an agent requesting a ser-
vice can contact other agents in a round-robin fashion, get
their quotes and divide its tasks in an uniform fashion. Such
an approach is simplistic and may result in an uniform load
distribution. However, we think that this technique has a
few drawbacks. First, it requires an agent to be aware of
all other collaborators in the system. Second, there is al-
ways a trade-off between balancing the load uniformly and
getting the most economical service. Third, a round-robin
selection by each agent may or may not result in a uniform
load distribution in the entire system. Fourth, each agent
wanting to offer an service, may be required to indicate its
current load to all of its clients, so that the clients can make
appropriate selections. Finally, we think that this simplistic
mechanism does not emulate the real-world situation.

For the multiple-opinion scenario, we are proposing a
bidding mechanism, in which each agent specifies a quote
for its service and the agent requesting an assistance makes
a selection based upon these quotes.

3.1. Issues in a bidding mechanism

The bidding mechanism is a natural extension of the
single-opinion economic framework. However, the pres-
ence of multiple agents gives rise to many interesting ques-
tions: Why (or when) should an agent bid? How much time
should the requesting agent wait? How much should an
agent bid? How should the requesting agent decide which
remote agent to choose? There are many valid answers
to these questions. In the following paragraphs, we will
discuss possible alternatives and present our approaches.

3.1.1. Why should an agent post its bid?
It is possible that an agent may want to become a “free

rider”, i.e., choose not to bid. Some of the factors influenc-
ing such a decision include addressing questions such as: Is
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the expected revenue larger than expected costs? Is the ex-
pected effort worth the bid? In D-SIFTER, we have taken
a simplistic view, called as the principle of ever-readiness,
i.e., each agent will always be ready to offer assistance by
posting its bid. The reason for this assumption is the very
basis of distributed filtering. In a decentralized system,
such as D-SIFTER, it is conceivable to imagine a situation
in which a single agent cannot complete the task of classi-
fication for its owner. However, through collaboration with
other agents, this task could be successfully executed. In a
market based system, each assistance requested has a price
associated with it and hence, in order to seek collaboration,
agents must have sufficient amount of money. As agents
receive documents continuously, it is obvious that irrespec-
tive of the initial financial situation of each agent, there is
a need for an alternative to earn money. The only way an
agent can earn money is by offering its assistance to oth-
ers. In addition to improving each agent’s financial state,
the principle of ever-readiness ensures a constant progress
of the entire collaborative environment.4

3.1.2. What is the effect of time on a bid?
To address the effect of time, an agent may impose a

time limit along with its bid. This time-limit will decide the
validity of the bid. The validity of a bid could be static or
dynamic, i.e., does not change over a substantial amount of
time or change very frequently. In D-SIFTER, each agent
calculates its bid in every cycle, where a cycle indicates
one iteration of the algorithm mentioned in section 2.3.
This bid is valid only until the next cycle. Whenever an
agent needs assistance, it checks the current bids posted
by all other agents and makes a decision about selecting a
collaborator. The implementational details of an agent are
discussed later.

3.1.3. What should be the value of a bid and how to select
a bid?
The calculation of the amount of a bid is complex, as

it depends upon many internal and external factors. The
internal factors are based upon each agent’s (and thereby
its owner’s) desires, while the external factors depend upon
the overall filtering environment. Also, the selection of a
bid from all the available ones, depends upon issues such
as the magnitude of the bid and assured quality of service
(or confidence about a collaborator’s competence).

In D-SIFTER, we have used a model, in which the
amount of a bid is dependent upon the initial dollar value,
the current financial state and the history of document clas-
sifications. While selecting a bid, we have assumed a uni-
form guarantee about the quality of service and hence, an
agent selects a collaborator whose bid is the least expensive.

Next subsections describe the factors influencing a bid
and our approach for calculating a bid in a market-driven
information classification environment.

4 A continuous participation of agents is a critical concern expressed by
experts at the collaborative filtering workshop [Avery 1996].

3.2. Factors influencing a bid

As stated previously, internal and external factors in-
fluence a bid. When an agent makes a bid, that bid is a
reflection of its present state, which is dependent upon two
factors: the current information dollar value and the proba-
bility of the next document needing a remote classification.

The first factor is an agent’s current dollar amount. This
is important because, in a market driven environment, an
agent only earns money when it performs a service and pays
money when it needs a service. Hence, the current financial
state of an agent is directly controlled by the number of
remote classifications it asks and provides. The second
factor is the number of documents that the agent is not able
to classify locally. The more documents the agent needs to
request help with, the more money it will need.

Once we determined these two factors, we considered
extreme cases involving them. If an agent has a small
amount of money and a small amount of expected remote
classifications (a factor which will be discussed in detail
soon), it will need as many jobs as it can receive, and
hence, it will bid a minimal amount. On the other hand, if
the agent has a lot of money and a small number of expected
remote classifications, it can surely afford to lose some jobs.
This would cause the agent to bid a high amount.

The other extreme scenario occurs when an agent has a
large number of expected remote classifications and only
a limited amount of money to pay for these services. In
such a situation, the agent cannot afford to miss any job,
and hence would charge only the minimal amount. On the
other hand, having a large number of expected remote clas-
sifications, and a large amount of money, an agent should
bid high as it is not bothered with the cost of remote ser-
vices.

Using these two factors, we formulated a bidding func-
tion for all agents which is described in the next section.

3.3. The bidding function

We began by introducing an upper and a lower limit
for all bids. The lower limit (minimal amount) was set
to zero and the upper limit (maximum amount) was set
as a parameter, MaxBid. The actual bid is computed as a
product of the bidding factor and the MaxBid. The bidding
factor is a function of the two parameters discussed earlier –
the current financial state of an agent and the probability of
next document needing remote classification. The bidding
factor is a weighted sum of these two parameters. The
weights are denoted as α and (1− α).

Figure 2 shows a schematic of the computational mech-
anism. This diagram produces the following formula:

ActualBid = MaxBid
(
(1− α)Pr + αP$

)
,

where MaxBid is the maximum amount an agent may bid,
α and (1 − α) are weighting factors, Pr is the probability
that the next document cannot be classified locally, and P$
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Figure 2. Schematic of bidding function.

is the ratio of current dollars to initial dollars, which is the
indication of each agent’s current financial state.5

As stated previously, Pr is the probability that the next
document will need remote collaboration. As future cannot
be known in advance, we can only make predictions about
it. By assuming that an user’s interests do not change very
rapidly, we used the principle of locality and adopted a
working-set model (or a working-set window). The princi-
ple of locality says that the future behavior of the system
will most likely be similar to its past, i.e., the probability
of the next document needing a remote assistance will be
similar to the experience with the past documents, i.e., his-
tory of classification. The working-set window defines how
many documents constitute the history. If the window is
small, the agent would rely on its most recent past to make
predictions about the future. On the other hand, if the win-
dow is very large, the prediction of future is influenced by
the nature of the documents from distant as well as recent
past. Once the window size is specified by the user, Pr

is calculated by dividing the number of documents need-
ing remote collaboration within the window by the total
number of documents within the window.
α is the weighting factor. It can be adjusted accord-

ing to each user interests. Its value is between zero and
one and indicates the influence of each of the two parame-
ters involved in the bidding calculations on the actual bid.
A value of zero for α would reduce the bidding factor to
Pr, while a value of one makes the bidding factor to be
equal to P$.

3.4. Implementation

In order to experiment and validate our model, we im-
plemented the bidding mechanism onto D-SIFTER. Each
agent in our prototype continuously executes the following
algorithm:

1. Calculate a current bid based upon
bidding formula and post it.

2. Attempt to classify a local document,
if successful, display the result
to your owner.

3. If necessary, obtain remote assistance
from lowest bidding agent.

4. If remote agent has selected you,
classify its document.

5 It is obvious that in some cases, P$ can be larger than 1.

5. Check to see if your collaborator
has posted the result for you,
if it has, then fetch
and display that result to your owner.

6. Go back to 1.

The next section describes the experiments we conducted
after implementing the mechanism previously described.

4. Experiments and observations

We conducted two sets of experiments using SUN
Sparc4 or SUN Ultra1 machines running the Solaris Op-
erating System and connected via an Ethernet. The first
set of experiments included three agents and the document
set consisted of 1064 documents from the domain of com-
puter science. Each agent had a disjoint knowledgebase.
The second set of experiments included five agents and the
document set consisted of 5335 documents from the do-
main of computer science. The knowledgebases of agents
were overlapping in nature.

4.1. Three agents

Table 1 shows the number of local and remote classifica-
tions possible for each of three agents. The second column
in table 1 contains the total number of documents (out of
the possible 1064) that can be classified locally and the
third column indicates the remaining documents that must
be classified remotely. Only 66 of the original 1064 can
not be classified by any of the three agents. This exper-
iment was conducted earlier during the preliminary work.
For more information on it or the other preliminary exper-
iments, the reader is referred to [Raje et al. 1997b].

The results in table 1 provided a clear picture about
the classification abilities of all three agents. These results
acted as a starting point for our experiments with the bid-
ding mechanism.

4.1.1. Constant α and constant window size
The first set of experiments studied the behavior of the

three agents with the same values of α and a constant size
window of 50 documents. We ran experiments with three
values of α, 0.0, 0.5 and 1.0. The minimum bidding value
was $2 and the maximum bidding value was $10. Each
agent was given $500 at the beginning.

Tables 2 and 3 show the data collected for the experiment
with α = 0.0. Table 2 indicates the data related to the
local classifications of each agent, while table 3 shows the

Table 1
Statistics for the multiple-opinion version of D-SIFTER.

Knowledgebase Successful local Successful remote Failed remote

Agent 1 676 322 66
Agent 2 350 648 66
Agent 3 636 362 66
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Table 2
Data related to local documents of each agent.

Agent Local successful Remote successful Remote unsuccessful Remote un-affordable

1 676 259 129 0
2 350 132 55 527
3 636 300 128 0

Table 3
Data related to remote documents received by each agent for the other agents.

Agent Total # received Successful Failed # of A1’s docs. # of A2’s docs. # of A3 docs.

1 612 431 181 – 184 428
2 2 1 1 2 – 0
3 389 259 130 186 3 –

Figure 3. Cash-flow for α = 0.0.

data related to the remote classifications performed by each
agent for the other agents.

Figure 3 is the graph of information dollars as a func-
tion of each execution cycle6 for α = 0.0. As seen from it,
Agent 1 clearly dominates the others and shows a substan-
tial gain in its information dollars, while Agent 2 quickly
drops to a minimal amount. This behavior is hardly sur-
prising, as Agent 1, which gained the most, has the best
knowledgebase, while Agent 2, which lost all its money,
has the worst knowledgebase.7 The term best/worst is an
indication of the completeness of a knowledgebase in as-
sisting an agent to achieve a large/small number of local
classifications. The highest gain achieved by Agent 1 is
due to a combination of two factors: (a) it requires the
least number of remote classifications, and (b) as α is 0.0,
its bid is always the least (as the bid in this case depends
only on Pr). Similarly, the disaster of Agent 2 is a com-
pound effect of its need for a large number of remote clas-
sifications and a highest bid which it offers. The impact
of economic downfall of Agent 2 is evident in table 2 –
Agent 2 sought assistance of others for only 132 (success-
ful) +55 (unsuccessful) documents, and it could not afford
seeking assistance for 527 (which is 49.5% of total 1064)
documents. The knowledgebase of Agent 3 is equally good

6 Each execution cycle corresponds to an iteration of the filtering algorithm
discussed earlier.

7 This observation is evident from the table 1.

Figure 4. Cash-flow for α = 0.5.

Figure 5. Cash-flow for α = 1.0.

as that of Agent 1, and hence, its bids were comparable to
those of Agent 1. However, on an average, bids of Agent 1
were less than those of Agent 3, thus, Agent 1 gained more
than Agent 3.

Figure 4 indicates the situation for α = 0.5. Here also,
Agent 1 gains the most, Agent 2 loses the most and Agent 3
stabilizes to the initial dollar amount.

Figure 5 demonstrates a slightly different behavior. As
this graph corresponds to α = 1.0, the agents rely solely on
their current dollar amount for calculating a bid. Since all
agents start with the same initial amount ($500), the bids
are competitive and all agents maintain a similar amount of
money for a substantial period. Towards the end they begin
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Figure 6. Cash-flow for α = 1.0.

to break from one another. The sharp incline for Agent 1 is
caused by the current implementation of the environment.
Once an agent goes over the initial amount, we consider
that agent in the safe zone and its P$ amount is set to one,
which enforces the upper limit (as specified by MaxBid)
on any bid. This meant that both Agent 1 and Agent 3
produced the same bid even though, Agent 1 had gained
more than $500, thus creating a tie situation. The current
implementation took Agent 1 as the service provider in the
case of a bidding-tie. As this is not a desirable situation,
we conducted another experiment with the same value of
α but neglected the upper limit for bidding amount by not
truncating the value of P$.

Figure 6 shows the new results. This time the behaviors
of agents were similar to the first two experiments. Agent
2 quickly dropped to a low value due to its lack of ability
to classify documents locally while the other two fought
over the remote work. This phenomenon did not occur in
the previous experiments because the bid was determined
partly or totally by Pr. When α = 1.0, Pr plays no role in
the bidding process and since Agents 1 and 3 had similar
knowledgebases, the distribution of the work to Agents 1
and 3 was fairly even. Hence, the gains at the end of the
experiment for Agents 1 and 3 were comparable.

4.2. Five agents

We ran the second set of experiments with five agents
and a larger document set consisting of 5335 documents
to investigate the scalability of the system. Before divid-
ing the knowledgebase among five agents, we conducted a
preliminary experiment to check the comprehensiveness of
the complete knowledgebase. The full knowledgebase was
able to classify 3728 out of 5335 documents (nearly 70%).

Next, we observed the behavior of agents in three differ-
ent scenarios. The first scenario was with the same value
of α. We ran experiments for three values of α: 0.0, 0.5,
1.0. In the second scenario, we studied the behavior of
agents with each having a different value of α and the con-
stant window size of 50 documents. Values of α were set
to 0.0, 0.25, 0.50, 0.75, 1.0 for Agents 1–5, respectively.
In the third scenario, agents retained their α values from
the second scenario. However, their window sizes differed

Figure 7. Cash-flow for α = 0.0.

from each other. Agents 1–5 had their window sizes set
to 250, 200, 150, 100 and 50, respectively. We selected
the minimum bidding value to be $2 with no limit set on
the maximum bid. Each agent was given the $20000 at the
beginning.

4.2.1. Constant α and constant size window
Tables 4 and 5 show the data collected for the experi-

ment with α = 0.0. Figure 7 is the graph of information
dollars as a function of each execution cycle for α = 0.0.
As seen from the tables, Agent 3 has the best knowledge-
base out of all the five agents. It is able to classify locally
roughly twice as many documents as other agents. The
highest gain achieved by Agent 3 is a result of combina-
tion of the least number of remote classifications and the
lowest bid on average. As α = 0.0, the bid depends solely
on Pr. Similarly, Agents 2, 4 and 5 could not compete with
Agent 3, because their Pr was higher and thus they finished
with a lesser amount of money. A rather high number of
unsuccessful remote classifications for all agents is not sur-
prising, as each agent owns nearly only one fifth of the
whole thesaurus.

Figure 8 indicates the situation for α = 0.5. The value
of α forces the bid to be dependent on the current dol-
lar amount as well as the probability that the next doc-
ument will need remote collaboration. Agent 5 has the
worst knowledgebase, therefore it spends most money and
the probability that its next document will not be classified
locally is high. The least amount of money causes its bid
to be the lowest, which in turn brings in most work. The
losses of Agents 1, 2 and 4 are due to their lack of com-
petitive bids and poor knowledgebase. These two factors
cause low income and high spending.

Table 4
Data related to local documents of each agent.

Agent Local successful Remote successful Remote unsuccessful

1 1330 1371 2634
2 1187 1263 2885
3 2200 436 2699
4 1334 1006 2995
5 1078 1000 3257
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Table 5
Data related to remote documents received by each agent for the other agents.

Agent Total received Successful Failed A1’s docs A2’s docs A3’s docs A4’s docs A5’s docs

1 3885 896 2989 – 401 1544 839 1101
2 1440 382 1058 260 – 211 392 577
3 12740 3710 9030 3714 3725 – 2770 2531
4 1472 88 1384 31 21 1372 – 48
5 9 0 9 0 1 8 0 –

Figure 8. Cash-flow for α = 0.5.

Figure 9. Cash-flow for α = 1.0.

Figure 9 demonstrates different behavior. As this graph
corresponds to α = 1.0, the agents rely solely on their
current dollar amount for calculating the bid. Once again,
Agent 5, who had to seek remote help more times than
other agents, was posting the lowest bid, thus bringing in
most work.

4.2.2. Different α and constant size window
Figure 10 shows the cash-flow for agents with different

α values. Agents 1–5 have their α values set to 0, 0.25,
0.5, 0.75 and 1.0, respectively. Only Agent 1 and Agent 4
were able to finish with profits. Due to the fact that α = 0.0
for Agent 1, its bid is dependent on the Pr only. In that
case, the lower the probability that the next document will
require a remote assistance, the lower the bid. Since the
knowledgebase of Agent 1 is only considerably inferior to
that of Agent 3 (as seen from table 4), its Pr is lower than
other agent’s Pr (except for the Agent 3). This and the fact
that the positive income does not affect the bid, make the

Figure 10. Cash-flow for 5 agents with different α each.

Figure 11. Cash-flow for 5 agents with different α and different size
window each.

offer of Agent 1 the most competitive causing the highest
gain.

Agent 4 achieved the second highest gain. Its success
is the effect of the combination of the low P$ (which dom-
inates the bid estimate when α = 0.75) and the Pr com-
parable to the one of Agent 1 (as seen from the table 4).
Agent 3, which in the past examples was always one of
the best performers, suffered a considerable loss this time.
This economic downfall was provoked by the combination
of its low P$ and the low Pr. These two factors made the
bid of Agent 3 unattractive to other agents.

4.2.3. Different α and varying size window
Figure 11 shows the results obtained by assigning dif-

ferent α and different window sizes for all five agents.
Agents 1–5 have their α values set to 0, 0.25, 0.5, 0.75,
1.0 and their window size set to 250, 200, 150, 100, 50,
respectively. The results are similar to those in figure 10
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with one striking difference. This time, Agent 5 finished
second while Agent 4 finished third. Everything else re-
mained similar. The α = 1.0 and the window size of 250
documents increased the competitiveness of Agent 5 over
Agent 4. Since the bid of Agent 5 depends solely on Pr, the
increased size of the window (from 50 documents to 250
documents) has decreased the probability that the next doc-
ument will require a remote assistance. Lower Pr caused
the bid to be lower making it more competitive than it was
in the case of the window size of 50 documents. The bid
of Agent 4 which had α = 0.75 and the window size of
200 documents was determined by the combination of these
two factors. Agent 4 was less competitive than Agent 5,
because Agent 5 had a lower Pr due to its bad knowledge-
base.

5. Related work

Currently, there exists many collaborative information
assistance tools and each has a very different focus. This
section briefly describes only a small number of systems.
It should however be noted that the concept of collabora-
tion (or distribution) in D-SIFTER is slightly different from
the one used in other research efforts described in [Avery
1996]. A majority of these efforts provide prediction by
aggregating the individual recommendations at one central
place, while our approach relies more on decentralized fo-
rum, in which autonomous agents negotiate, learn and assist
each others.

Laskari et al. [1994] describes interface agents provid-
ing personalized services such as meeting scheduling, e-
mail handling, news filtering, and entertainment selection.
They provide [Laskari et al. 1994] an illustration of expe-
rienced interface agents helping a new agent to deal with
unfamiliar situations as well as to speed up the learning
process.

Implemented at Bellcore [Avery 1996; Bellcore 1997],
GAB uses hierarchical decompositions made by users and
provides browsing facilities over Web pages. GAB’s mis-
sion is to provide browsable interfaces for pages which are
represented by equivalence classes. A summary of GAB’s
features indicate that GAB could be very useful for the
middle-level user but disappointing for the novice or ex-
pert [Avery 1996]. One of the biggest drawbacks of GAB
includes its ability to reach into someone else’s bookmarks.
This raises privacy issues.

Phoaks is yet another web-based filter application.
Phoaks uses the frequency of mention data within Usenet
news groups. The AT&T Research group is now investi-
gating how far they can go without asking the user for data.
They are also exploring human interface issues. For more
information on the Phoaks project, please see [Avery 1996;
AT&T Research Group 1997].

Developed by John Riedl and Paul Resnick [Avery 1996;
Riedl and Resnick 1997], GroupLens uses Usenet news-
groups as a domain to produce quality predictions about

certain articles. The open architecture feature allows devel-
opers to create clients which work with GroupLens servers
or even replace them if necessary. One of the biggest draw-
backs about the system is the size of its domain. Usenet
offers the potential of approximately 22 million user. With
this many users reading and ratings articles, the database is
simply huge [Avery 1996].

Andreoli et al. [1995] describe a constraint-based agent
framework that has direct application in complex infor-
mation environments such as the WWW. The framework
employs Constraint-based Knowledge Brokers (CBKBs) to
conduct knowledge-intensive tasks by exploiting constraints
and reusing information. Using this framework, for exam-
ple, it is possible to handle queries generated in the WWW
by transforming them into constraints on brokers, with “spe-
cialization” or prior knowledge of diverse sources, that ulti-
mately cooperate and compose a solution-set to the queries.
Several types of agent-interaction protocols (e.g., direct
request-subrequest, broadcast with local caching, problem-
tuned, etc.) are supported along with an elegant model of
cooperative agents (brokers). The strength of the CBKB
framework is that it is extremely general in nature, with a
solid foundation in the distributed problem solving (DPS)
paradigm, that can be adapted to a variety of agent negoti-
ation strategies.

6. Future work and conclusion

Many avenues of future work stem out from our cur-
rent research. One interesting possibility is to allow sub-
contracting and extracting commissions, while performing
the classifications. Other alternatives to be explored include
associating a time period with each bid and allowing a bid-
ding war. A bidding war would permit an agent to adjust
its bid based upon the bids of other agents. As described
in this paper, the bids are computed by using the history of
local/remote classifications and current financial state of the
agent. We plan to integrate other factors such as the qual-
ity of service, past experiences with the service providers
and load-distribution in the bidding calculations. We also
look forward to investigating a more complicated mecha-
nism for collaborator selection. At present, D-SIFTER is
tested only with documents from the domain of computer
science, we plan to use D-SIFTER to classify documents
from an entirely different field.

An important component which is present in SIFTER,
but not yet implemented in D-SIFTER is the user-profile
module. An incorporation of this module into D-SIFTER
will enhance the architecture of agents and allow agents to
learn about the behavioral changes in the interests of their
owners.

At present, D-SIFTER only includes one aspect of col-
laboration, namely, asking for assistance when it cannot
classify documents locally. It is our intent to add the sec-
ond (and more complex) component of collaboration – an
ability to seek and negotiate useful information by a con-
tinuous interaction with other agents over the Web.
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In the information age, agents are expected to assume
a large responsibilities on behalf of their owners. In order
to satisfactorily serve its owner, an agent must not only
know owner’s interests but also have an ability to negoti-
ate with other agents in a successful manner. In this ar-
ticle, we have described an effective bidding framework
which allows agents to achieve a collaborative classifica-
tion of incoming documents for their owners. The bidding
function, which we have used considers the impact of the
present financial state of an agent and its prediction about
future. Our preliminary results emphasize the feasibility of
a market-based economic system in a distributed informa-
tion classification environment.
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