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Preface

Modern biology has become an information science. Since the invention of a
DNA sequencing method by Sanger in the late seventies, public repositories
of genomic sequences have been growing exponentially, doubling in size every
16 months—a rate often compared to the growth of semiconductor transistor
densities in CPUs known as Moore’s Law. In the nineties, the public–private
race to sequence the human genome further intensified the fervor to gener-
ate high-throughput biomolecular data from highly parallel and miniaturized
instruments. Today, sequencing data from thousands of genomes, including
plants, mammals, and microbial genomes, are accumulating at an unprece-
dented rate. The advent of second-generation DNA sequencing instruments,
high-density cDNA microarrays, tandem mass spectrometers, and high-power
NMRs have fueled the growth of molecular biology into a wide spectrum of
disciplines such as personalized genomics, functional genomics, proteomics,
metabolomics, and structural genomics. Few experiments in molecular biol-
ogy and genetics performed today can afford to ignore the vast amount of
biological information publicly accessible. Suddenly, molecular biology and
genetics have become data rich.

Biological data mining is a data-guzzling turbo engine for postgenomic
biology, driving the competitive race toward unprecedented biological discov-
ery opportunities in the twenty-first century. Classical bioinformatics emerged
from the study of macromolecules in molecular biology, biochemistry, and
biophysics. Analysis, comparison, and classification of DNA and protein se-
quences were the dominant themes of bioinformatics in the early nineties.
Machine learning mainly focused on predicting genes and proteins functions
from their sequences and structures. The understanding of cellular functions
and processes underlying complex diseases were out of reach. Bioinformatics
scientists were a rare breed, and their contribution to molecular biology and
genetics was considered marginal, because the computational tools available
then for biomolecular data analysis were far more primitive than the array
of experimental techniques and assays that were available to life scientists.
Today, we are now witnessing the reversal of these past trends. Diverse sets
of data types that cover a broad spectrum of genotypes and phenotypes, par-
ticularly those related to human health and diseases, have become available.
Many interdisciplinary researchers, including applied computer scientists, ap-
plied mathematicians, biostatisticians, biomedical researchers, clinical scien-
tists, and biopharmaceutical professionals, have discovered in biology a gold
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mine of knowledge leading to many exciting possibilities: the unraveling of the
tree of life, harnessing the power of microbial organisms for renewable energy,
finding new ways to diagnose disease early, and developing new therapeutic
compounds that save lives. Much of the experimental high-throughput biology
data are generated and analyzed “in haste,” therefore leaving plenty of oppor-
tunities for knowledge discovery even after the original data are released. Most
of the bets on the race to separate the wheat from the chaff have been placed
on biological data mining techniques. After all, when easy, straightforward,
first-pass data analysis has not yielded novel biological insights, data mining
techniques must be able to help—or, many presumed so.

In reality, biological data mining is still much of an “art,” successfully
practiced by a few bioinformatics research groups that occupy themselves
with solving real-world biological problems. Unlikely data mining in business,
where the major concerns are often related to the bottom line—profit—the
goals of biological data mining can be as diverse as the spectrum of biologi-
cal questions that exist. In the business domain, association rules discovered
between sales items are immediately actionable; in biology, any unorthodox
hypothesis produced by computational models has to be first red-flagged and
is lucky to be validated experimentally. In the Internet business domain, clas-
sification, clustering, and visualization of blogs, network traffic patterns, and
news feeds add significant values to regular Internet users who are unaware of
high-level patterns that may exist in the data set; in molecular biology and ge-
netics, any clustering or classification of the data presented to biologists may
promptly elicit questions like “great, but how and why did it happen?” or
“how can you explain these results in the context of the biology I know?” The
majority of general-purpose data mining techniques do not take into consider-
ation the prior knowledge domain of the biological problem, leading them to
often underperform hypothesis-driven biological investigative techniques. The
high level of variability of measurements inherent in many types of biological
experiments or samples, the general unavailability of experimental replicates,
the large number of hidden variables in the data, and the high correlation of
biomolecular expression measurements also constitute significant challenges in
the application of classical data mining methods in biology. Many biological
data mining projects are attempted and then abandoned, even by experienced
data mining scientists. In the extreme cases, large-scale biological data min-
ing efforts are jokingly labeled as fishing expeditions and dispelled, in national
grant proposal review panels.

This book represents a culmination of our past research efforts in biolog-
ical data mining. Throughout this book, we wanted to showcase a small, but
noteworthy sample of successful projects involving data mining and molec-
ular biology. Each chapter of the book is authored by a distinguished team
of bioinformatics scientists whom we invited to offer the readers the widest
possible range of application domains. To ensure high-quality standards, each
contributed chapter went through standard peer reviews and a round of revi-
sions. The contributed chapters have been grouped into five major sections.



T&F Cat # C6847 Chapter: page: xi date: August 5, 2009

Preface xi

The first section, entitled Sequence, Structure, and Function, collects contri-
butions on data mining techniques designed to analyze biological sequences
and structures with the objective of discovering novel functional knowledge.
The second section, on Genomics, Transcriptomics, and Proteomics, contains
studies addressing emerging large-scale data mining challenges in analyzing
high-throughput “omics” data. The chapters in the third section, entitled
Functional and Molecular Interaction Networks, address emerging system-
scale molecular properties and their relevance to cellular functions. The fourth
section is about Literature, Ontology, and Knowledge Integrations, and it col-
lects chapters related to knowledge representation, information retrieval, and
data integration for structured and unstructured biological data. The con-
tributed works in the fifth and last section, entitled Genome Medicine Appli-
cations, address emerging biological data mining applications in medicine.

We believe this book can serve as a valuable guide to the field for graduate
students, researchers, and practitioners. We hope that the wide range of topics
covered will allow readers to appreciate the extent of the impact of data mining
in molecular biology and genetics. For us, research in data mining and its
applications to biology and genetics is fascinating and rewarding. It may even
help to save human lives one day. This field offers great opportunities and
rewards if one is prepared to learn molecular biology and genetics, design user-
friendly software tools under the proper biological assumptions, and validate
all discovered hypotheses rigorously using appropriate models.

In closing, we would like to thank all the authors that contributed a chapter
in the book. We are also indebted to Randi Cohen, our outstanding publishing
editor. Randi efficiently managed timelines and deadlines, gracefully handled
the communication with the authors and the reviewers, and took care of ev-
ery little detail associated with this project. This book could not have been
possible without her. Our thanks also go to our families for their support
throughout the book project.

Jake Y. Chen
Indianapolis, Indiana

Stefano Lonardi
Riverside, California
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Chapter 1

Consensus Structure Prediction for
RNA Alignments

Junilda Spirollari and Jason T. L. Wang

New Jersey Institute of Technology
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1.1 Introduction

RNA secondary structure prediction has been studied for quite awhile.
Many minimum free energy (MFE) methods have been developed for pre-
dicting the secondary structures of single RNA sequences, such as mfold [1],
RNAfold [2], MPGAfold [3], as well as recent tools presented in the liter-
ature [4, 5]. However, the accuracy of predicted structures is far from per-
fect. As evaluated by Gardner and Giegerich [6], the accuracy of the MFE
methods for single sequences is 73% when averaged over many different
RNAs.

Recently, a new concept of energy density for predicting the secondary
structures of single RNA sequences was introduced [7]. The normalized free
energy, or energy density, of an RNA substructure is the free energy of that
substructure divided by the length of its underlying sequence. A dynamic

3
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programming algorithm, called Densityfold, was developed, which delocalizes
the thermodynamic cost of computing RNA substructures and improves on
secondary structure prediction via energy density minimization [7]. Here, we
extend the concept used in Densityfold and present a tool, called RSpredict, for
RNA secondary structure prediction. RSpredict computes the RNA structure
with minimum energy density based on the loop decomposition scheme used
in the nearest neighbor energy model [8]. RSpredict focuses on the loops in an
RNA secondary structure, whereas Densityfold considers RNA substructures
where a substructure may contain several loops.

While the energy density model creates a foundation for RNA secondary
structure prediction, there are many limitations in Densityfold, just like in all
other single sequence-based MFE methods. Optimal structures predicted by
these methods do not necessarily represent real structures [9]. This happens
due to several reasons. The thermodynamic model may not be accurate. The
bases of structural RNAs may be chemically modified and these processes
are not included in the prediction model. Finally, some functional RNAs may
not have stable secondary structures [6]. Thus, a more reliable approach is
to use comparative analysis to compute consensus secondary structures from
multiple related RNA sequences [9].

In general, there are three strategies with the comparative approach. The
first strategy is to predict the secondary structures of individual RNA se-
quences separately and then align the structures. Tools such as RNAshapes
[10,11], MARNA [12], STRUCTURELAB [13], and RADAR [14,15] are based
on this strategy. RNA Sampler [9] and comRNA [16] compare and find stems
conserved across multiple sequences and then assemble conserved stem blocks
to form consensus structures, in which pseudoknots are allowed.

The second strategy predicts common secondary structures of two or more
RNA sequences through simultaneous alignment and consensus structure in-
ference. Tools based on this strategy include RNAscf [17], Foldalign [18], Dy-
nalign [19], stemloc [20], PMcomp [21], MASTR [22], and CARNAC [23].
These tools utilize either folding free energy change parameters or stochastic
context-free grammars (SCFGs) and are considered derivations of Sankoff’s
method [24].

The third strategy is to fold multiple sequence alignments. RNAalifold
[25, 26] uses a dynamic programming algorithm to compute the consensus
secondary structure with MFE by taking into account thermodynamic stabil-
ity, sequence covariation together with RIBOSUM-like scoring matrices [27].
Pfold [28] is a SCFG algorithm that produces a prior probability distribution
of RNA structures. A maximum likelihood approach is used to estimate a
phylogenetic tree for predicting the most likely structure for input sequences.
A limitation of Pfold is that it does not run on alignments of more than 40 se-
quences and in some cases produces no structures due to under-flow errors [6].
Maximum weighted matching (MWM), based on a graph-theoretical approach
and developed by Cary and Stormo [29] and Tabaska et al. [30], is able to
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predict common secondary structures allowing pseudo-knots. KNetFold [31]
is a recently published machine learning method, implemented using a hierar-
chical network of k-nearest neighbor classifiers that analyzes the base pairings
of alignment columns in the input sequences through their mutual information,
Watson–Crick base pairing rules and thermodynamic base pair propensity de-
rived from RNAfold [2]. The method presented in this chapter, RSpredict,
joins the many tools using the third strategy; it accepts a multiple alignment
of RNA sequences as input data and predicts the consensus secondary struc-
ture for the input sequences via energy density minimization and covariance
score calculation.

We also considered two variants of RSpredict, referred to as RSefold and
RSdfold respectively. Both RSefold and RSdfold use the same covariance score
calculation as in RSpredict. The differences among the three approaches lie in
the folding algorithms they adopt. Rse-fold predicts the consensus secondary
structure for the input sequences via free energy minimization, as opposed to
energy density minimization used in RSpredict. RSdfold does the prediction
via energy density minimization, though its energy density is calculated based
on RNA substructures as in Densityfold, rather than based on the loops used
in RSpredict.

The rest of the chapter is organized as follows. We first describe the imple-
mentation and algorithms used by RSpredict, and analyze the time complexity
of the algorithms (see Section 1.2). We then present experimental results of
running the RSpredict tool as well as comparison with the existing tools (see
Section 1.3). The experiments were performed on a variety of datasets. Finally
we discuss some properties of RSpredict, possible ways to improve the tool
and point out some directions for future research (see Section 1.4).

1.2 Algorithms

RSpredict, which can be freely downloaded from http://datalab.njit.edu/
biology/RSpredict, was implemented in the Java programming language. The
program accepts, as input data, a multiple sequence alignment in the FASTA
or ClustalW format and outputs the consensus secondary structure of the
input sequences in both the Vienna style dot bracket format [26] and the
connectivity table format [32]. Below, we describe the energy density model
adopted by RSpredict. We then present a dynamic programming algorithm
for folding a single RNA sequence via energy density minimization. Next,
we describe techniques for calculating covariance scores based on the input
alignment. Finally we summarize the algorithms used by RSpredict, combining
both the folding technique and the covariance scores obtained from the input
alignment, and show its time complexity.
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1.2.1 Folding of a single RNA sequence

1.2.1.1 Preliminaries

We represent an RNA secondary structure as a fully decomposed set of
loops. In general, a loop L can be one of the following (see Figure 1.1):

i. A hairpin loop (which is a loop enclosed by only one base pair; the
smallest possible hairpin loop consists of three nucleotides enclosed by
a base pair)

ii. A stack, composed of two consecutive base pairs

iii. A bulge loop, if two base pairs are separated only on one side by one or
more unpaired bases

iv. An internal loop, if two base pairs are separated by one or more unpaired
bases on both sides

v. A multibranched loop, if more than two base pairs are separated by zero
or more unpaired bases in the loop

We now introduce some terms and definitions. Let S be an RNA sequence
consisting of nucleotides or bases A, U, C, G. S[i] denotes the base at position
i of the sequence S and S[i, j] is the subsequence starting at position i and
ending at position j in S. A base pair between nucleotides at positions i and
j is denoted as (i, j) or (S[i], S[j]), and its enclosed sequence is S[i, j]. Given
a loop L in the secondary structure R of sequence S, the base pair (i∗, j∗) in
L is called the exterior pair of L if S[i∗](S[j∗], respectively) is closest to the
5′ (3′, respectively) end of R among all nucleotides in L. All other nonexterior
base pairs in L are called interior pairs of L. The length of a loop L is the
number of nucleotides in L. Note that two loops may overlap on a base pair.
For example, the interior pair of a stack may be the exterior pair of another
stack, or the exterior pair of a hairpin loop. Also note that a bulge or an
internal loop has exactly one exterior pair and one interior pair.

We use the energy density concept as follows. Given a secondary structure
R, every base pair (i, j) in R is the exterior pair of some loop L. We assign
(i, j) and L an energy density, which is the free energy of the loop L divided by
the length of L. The set of free energy parameters for nonmultibranched loops
used in our algorithm is acquired from [33]. The free energy of a multibranched
loop is computed based on the approach adopted by mfold [1], which is a
linear function of the number of unpaired bases and the number of base pairs
inside the loop, namely a + b × n1 + c × n2, where a, b, c are constants, n1
is the number of unpaired bases and n2 is the number of base pairs inside
the multibranched loop. We adopt the loop decomposition scheme used in the
nearest neighbor energy model developed by Turner et al. [8]. The secondary
structure R contains multiple loop components and the energy densities of
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FIGURE 1.1: Illustration of the loops in an RNA secondary structure. Each
loop has at least one base pair. A stem consists of two or more consecutive
stacks shown in the figure.

the loop components are additive. Our folding algorithm computes the total
energy density of R by taking the sum of the energy densities of the loop
components in R. Thus, the RNA folding problem can be formalized as follows.
Given an RNA sequence S, find the set of base pairs (i, j) and loops with
(i, j) as exterior pairs, such that the total energy density of the loops (or
equivalently, the exterior pairs) is minimized. The set of base pairs constitutes
the optimal secondary structure of S.

When generalizing the folding of a single sequence to the prediction of the
consensus structure of a multiple sequence alignment, we introduce the notion
of refined alignments. At times, an input alignment may have some columns
each of which contains more than 75% gaps. Some tools including RSpredict
delete these columns to get a refined alignment [28]; some tools simply use the
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original input alignment as the refined alignment. Suppose the original input
alignment Ao has N sequences and no columns, and the refined alignment A
has N sequences and n columns, n ≤ no. Formally, the consensus structure of
the refined alignment A is a secondary structure R together with its sequence
S such that each base pair (S[i], S[j]), 1 ≤ i < j ≤ n, in R corresponds to
the pair of columns i, j in the alignment A, and each base S[i], 1 ≤ i ≤ n,
is the representative base of the ith column in the alignment A. There are
several ways to choose the representative base. For example, S[i] could be
the most frequently occurring nucleotide, excluding gaps, in the ith column
of the alignment A. Furthermore, there is an energy measure value associated
with each base pair (S[i], S[j]) or more precisely its corresponding column pair
(i, j), such that the total energy measure value of all the base pairs in R is
minimized.

The consensus secondary structure of the original input alignment Ao is
defined as the structure Ro, obtained from R, as follows: (i) the base (base pair,
respectively) for column Co (column pair (Co1, Co2), respectively) in Ao is
identical to the base (base pair, respectively) for the corresponding column C
(column pair (C1, C2), respectively) in A if Co ((Co1, Co2), respectively) is not
deleted when getting A from Ao; (ii) unpaired gaps are inserted into R, such
that each gap corresponds to a column that is deleted when getting A from Ao

(see Figure 1.2). In Figure 1.2, the RSpredict algorithm transforms the original
input alignmentAo to a refined alignmentA by deleting the fourth column (the
column in red) of Ao. The algorithm predicts the consensus structure of the
refined alignment A. Then the algorithm generates the consensus structure
of Ao by inserting an unpaired gap to the fourth position of the consensus
structure of A. The numbers inside parentheses in the refined alignment A
represent the original column numbers in Ao.

In what follows, we first present an algorithm for folding a single RNA
sequence based on the energy density concept described here. We then gener-
alize the algorithm to predict the consensus secondary structure for a set of
aligned RNA sequences.

1.2.1.2 Algorithm

The functions and parameters used in our algorithm are defined below
where S[i, j] is a subsequence of S and R[i, j] is the optimal secondary struc-
ture of S[i, j].

i. NE(i, j) is the total energy density of all loops in R[i, j], where nu-
cleotides at positions i, j may or may not form a base pair.

ii. NEp(i, j) is the total energy density of all loops in R[i, j] if nucleotides
at positions i, j form a base pair.

iii. eH(i, j)(EH(i, j), respectively) is the free energy (energy density, respec-
tively) of the hairpin with exterior pair (i, j).
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FIGURE 1.2: Illustration of the consensus structure definition used by
RSpredict.

iv. eS(i, j)(ES(i, j), respectively) is the free energy (energy density, respec-
tively) of the stack with exterior pair (i, j) and interior pair (i+1, j−1).

v. eB(i, j, i′, j′), (EB(i, j, i′, j′), respectively) is the free energy (energy
density, respectively) of the bulge or internal loop with exterior pair
(i, j) and interior pair (i′, j′).

vi. eJ (i, j, i′1, j
′
1, i

′
2, j

′
2, . . . , i

′
k, j

′
k)EJ (i, j, i′1, j

′
1, i

′
2, j

′
2, . . . , i

′
k, j

′
k) respectively,

is the free energy (energy density, respectively) of the multibranched loop
with exterior pair (i, j) and interior pairs (i′1, j

′
1) , (i′2, j

′
2) , . . . , (i′k, j

′
k) .
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It is clear that

EH (i, j) =
eH (i, j)
j − i+ 1

(1.1)

ES(i, j) =
eS(i, j)

4
(1.2)

EB (i, j, i′, j′) =
eB (i, j, i′, j′)

i′ − i+ j − j′ + 2
(1.3)

EJ(i, j, i′1, j
′
1, i

′
2, j

′
2, . . . , i

′
k, j

′
k) =

eJ(i, j, i′1, j
′
1, i

′
2, j

′
2, . . . , i

′
k, j

′
k)

n1 + 2× n2
(1.4)

Here n1 is the number of unpaired bases and n2 is the number of base
pairs in the multibranched loop in (vi).

Thus, the total energy density of all loops in R[i, j] where (i, j) is a base
pair is computed by Equation 1.5:

NEP (i, j) = min



EH(i, j)
ES (i, j) + NEP (i+ 1, j − 1)

min
i<i′<j′<j

{EB (i, j, i′, j′) + NEP (i′, j′)}
min

i<i′
1<j′

1<i′
2<j′

2<···<i′
k<j′

k<j
{EJ (i, j, i′1, j

′
1, i

′
2, j

′
2, . . . , i

′
k, j

′
k)

+
∑k

r=1 NEP (i′r, j
′
r)}

(1.5)

That is, the energy density is calculated by taking the minimum of the
following four cases:

i. (i, j) is the exterior pair of a hairpin, in which case the energy density
NEP (i, j) equals EH(i, j), which is the energy density of the hairpin

ii. (i, j) is the exterior pair of a stack, in which case NEP (i, j) equals the
energy density of the stack, i.e., ES(i, j), plus NEP (i+ 1, j − 1)

iii. (i, j) is the exterior pair of a bulge or an internal loop, in which case
NEP (i, j) equals the minimum of the energy density of the bulge or
internal loop EB(i, j, i′, j′) plus NEP (i′, j′) for all i < i′ < j′ < j

iv. (i, j) is the exterior pair of a multibranched loop, in which case NEP (i, j)
equals the minimum of the energy density of the multibranched loop
Ej

(
i, j, i′1, j

′
1, i

′
2,j

′
2, . . . , i

′
k, j

′
k

)
plus

∑k
r=1 NEP (i′r, j

′
r), for all i < i′1 <

j′
1 < i′2 < j′

2 < · · · < i′k < j′
k < j

Equation 1.6 below shows the recurrence formula for calculating NE(i, j):

NE (i, j) = min


NE (i, j − 1)
NE (i+ 1, j)
NEP (i, j)
mini<h<j{NE (i, h− 1) + NE (h, j)}

(1.6)
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(d)

NE(i, h – 1)

NE(i, j)

NE(h, j)

jhh – 1i

NE(i, j – 1)

(a) (b) (c)

NE(i + 1, j)

NEp(i, j)NE(i, j)
NE(i, j)

j i

i j – 1 i + 1 j i j

FIGURE 1.3: Illustration of the cases in Equation 1.6. a) the total nor-
malized energy of all loops in the optimal secondary structure R[i, j − 1] of
subsequence S[i, j − 1]; b) the total normalized energy of all loops in the op-
timal secondary structure R[i + 1, j] of subsequence S[i + 1, j]; c) the total
normalized energy of all loops in the optimal secondary structure R[i, j] of
subsequence S[i, j], where S[i] and S[j] form a base pair; d) the minimum of
NE(i, k − 1) plus NE(k, j) for all i < k < j; The dashed line between two
nucleotides means that the two nucleotides may or may not form a base pair.
The solid line between two nucleotides means that the two nucleotides form a
base pair.

That is, the energy density is computed by taking the minimum of the
following four cases:

i. The total energy density of all loops in the optimal secondary structure
R [i, j − 1] of subsequence S [i, j − 1] (Figure 1.3a)

ii. The total energy density of all loops in the optimal secondary structure
R [i+ 1, j] of subsequence S [i+ 1, j] (Figure 1.3b)

iii. The total energy density of all loops in the optimal secondary structure
R[i, j] of subsequence S[i, j], where S[i] and S[j] form a base pair (Figure
1.3c)
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iv. The minimum of NE(i, h − 1) plus NE(h, j) for all i < h < j (Figure
1.3d)

Note that case (iii) of Equation 1.6 is not considered when the nucleotides at
positions i, j are forbidden to form a base pair, i.e., (S[i], S[j]) is a nonstandard
base pair. A standard base pair is any of the following: (A,U), (U,A), (G,C),
(C,G), (G,U), (U,G); all other base pairs are nonstandard.

In calculating the time complexity of the folding algorithm, there is a need
to check for finding the optimal i′, j′ where i < i′ < j′ < j in case (iii) (the
optimal i′1, j

′
1, i

′
2, j

′
2, . . . , i

′
k, j

′
k where i < i′1 < j′

1 < i′2 < j′
2 < · · · < i′k < j′

k < j
in case (iv), respectively) of Equation 1.5. It can be shown that it takes linear
time to compute NEP (i, j) in Equation 1.5. Hence, the time complexity of
the folding algorithm is O(n3) since we need to calculate NEP (i, j) for all
1 ≤ i < j ≤ n, where n is the number of nucleotides in the given sequence S.
The energy density of the optimal secondary structure R for the sequence S
equals NE(1, n).

1.2.2 Calculation of covariance scores

When applying the above folding algorithm to a multiple sequence align-
ment Ao, we take into consideration the correlation between columns of the
alignment. In many cases, the sequences in the alignment may have highly
varying lengths. We refine the alignment Ao by deleting columns containing
more than 75% gaps to get a refined alignment A [28]. We will use this refined
alignment throughout the rest of this subsection.

1.2.2.1 Covariance score

We use the covariance score introduced by RNAalifold [25, 26, 34] to
quantify the relationship between two columns in the refined alignment. Let
fij(XY ) be the frequency of finding both base X in column i and base Y
in column j, where X,Y are in the same row of the refined alignment. We
exclude the occurrences of gaps in column i or column j when calculating
fij(XY). The covariation measure for columns i, j, denoted Cij , is calculated
by Equation 1.7:

Cij =
∑
XY,X ′Y ′fij (XY )Dij (XY,X ′Y ′) fij (X ′Y ′)

2
(1.7)

Here, Dij(XY, X′Y′) is the Hamming distance between the two base pairs
(X,Y ) and (X ′, Y ′) if both of the base pairs are standard base pairs, or 0
otherwise. The Hamming distance between (X,Y ) and (X ′, Y ′) is calculated
as follows:

Dij (XY,X ′Y ′) = 2− δ (X,X ′)− δ (Y, Y ′) (1.8)

where

δ (X,X ′) =
{

1 if X = X ′

0 otherwise (1.9)



T&F Cat # C6847 Chapter: 1 page: 13 date: August 5, 2009

Consensus Structure Prediction for RNA Alignments 13

Observe that the information acquired from the two base pairs (X,Y )
and (X ′, Y ′) is the same as that from (X ′, Y ′) and (X,Y ). Thus, we divide
the numerator in Equation 1.7 by two so as to obtain the non-redundant
information between column i and column j in the refined alignment.

For every pair of columns i, j in the refined alignment, the covariance score
of the two columns i and j, denoted Covij , is calculated in Equation 1.10:

Covij = Cij + c1 ×NFij (1.10)

Here, Cij is as defined in Equation 1.7, c1 is a user-defined coefficient (in
the study presented here, c1 has a value of −1), and

NFij =
NCij

N
(1.11)

where N is the total number of sequences and NCij is the total number of
conflicting sequences in the refined alignment. A conflicting sequence is one
that has a gap in column i or column j, or has a nonstandard base pair in the
columns i, j of the refined alignment. A sequence with gaps in both columns
i, j is not conflicting.

1.2.2.2 Pairing threshold

We say that column i and column j in the refined alignment can possibly
form a base pair if their covariance score is greater than or equal to a pairing
threshold; otherwise, column i and column j are forbidden to form a base pair.
The pairing threshold, η, used in RSpredict is calculated as follows.

It is known that, on average, 54% of the nucleotides in an RNA sequence
S are involved in the base pairs of its secondary structure [35]. We use this
information to calculate an alignment-dependent pairing threshold, observing
that the base pairs in the consensus secondary structure of a sequence align-
ment represent the column pairs with the highest covariance scores. Given that
different structures contain different numbers of base pairs, we consider two
different percentages of columns, namely, 30% and 65%, in the sequence align-
ment. For each percentage p, there are at most Tp possible base pairs, where

Tp =
(p× n)× (p× n− 1)

2
(1.12)

and n is the number of columns in the sequence alignment.
Now, we calculate the covariance scores of all pairs of columns in the

given refined alignment, and sort the covariance scores in descending order.
We then select the top Tp largest covariance scores and store the covariance
scores in the set STp. Thus, the set ST0.65 contains the top largest covariance
scores that involve 65% of the columns in the refined alignment; the set ST0.30
contains the top largest covariance scores that involve 30% of the columns in
the refined alignment; and ST0.65\ST0.30 is the set difference that contains
covariance scores in ST0.65 but not in ST0.30 (see Figure 1.4). The pairing
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ST0.30

ST0.65

T0.30 T0.65

FIGURE 1.4: Illustration of the pairing threshold computation. The pairing
threshold used in RSpredict is computed as the average of the covariance
scores inside the shaded area.

threshold η used in RSpredict is calculated as the average of the covariance
scores in ST0.65\ST0.30, as shown in Equation 1.13:

η =
∑

Covij ∈ ST0.65\ST0.30Covij

|ST0.65\ST0.30|
(1.13)

where the denominator is the cardinality of the set difference ST0.65\ST0.30.
If the covariance score of columns i and j is greater than or equal to η,

then column i and column j can possibly form a base pair, and we refer to
(i, j) as a pairing column. If the covariance score of the columns i and j is
less than η, we will check the covariance scores of the immediate neighboring
column pairs of i, j to see if they are above a user-defined threshold [31] (in the
study presented here, this threshold is set to 0). The immediate neighboring
column pairs of i, j are i + 1, j − 1 and i − 1, j + 1. If the covariance scores
of both of the immediate neighboring column pairs of i, j are greater than or
equal to max{η, 0}, then (i, j) is still considered as a paring column.

1.2.3 Algorithms for RSpredict

Given a refined multiple sequence alignment A with N sequences, let (i, j)
be a pairing column in A. Let XS

i (Y S
j , respectively) be the nucleotide at

position i (j, respectively) of the sequence S in the alignment A.
(
XS

i , Y
S
j

)
must be the exterior pair of some loop L in S. We use e

(
XS

i , Y
S
j

)
to repre-

sent the free energy of that loop L. If
(
XS

i , Y
S
j

)
is a nonstandard base pair,

e
(
XS

i , Y
S
j

)
= 0. We assign the pairing column (i, j) a pseudo-energy eij where

eij =
1
N

∑
S∈A

e
(
XS

i , Y
S
j

)
+ c2 × Covij (1.14)

Here, c2 is a user-defined coefficient (in the study presented here, c2 = −1).
Thus, every pairing column in the refined alignment A has a pseudo-energy.
We then apply the minimum energy density folding algorithm described in
the beginning of this section to the refined alignment A, treating each pairing
column in A as a possible base pair considered in the folding algorithm.

Notice that when calculating the energy density for the loop L, the se-
quence S is in the refined alignment A, which may have fewer columns than
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the original input alignment Ao (cf. Figure 1.2). RSpredict computes all energy
densities based on the refined alignment, and the program uses loop lengths
from the refined alignment A rather than the original input alignment Ao.
Let R be the consensus secondary structure, computed by RSpredict, for the
refined alignment A. We obtain the consensus structure Ro of the original
input alignment Ao by inserting unpaired gaps to the positions in R whose
corresponding columns are deleted when getting A from Ao (cf. Figure 1.2).
The following summarizes the algorithms for RSpredict:

1. Input an alignment Ao in the FASTA or ClustalW format.

2. Delete the columns with more than 75% gaps from Ao to obtain a refined
alignment A.

3. Compute the pseudo-energy eij for every pairing column (i, j) in A as
in Equation 1.14.

4. Run the minimum energy density folding algorithm on A, using the
pseudo-energy values obtained from step (3) to produce the consensus
secondary structure R of the refined alignment A. The base at position i
of the consensus secondary structure R is the most frequently occurring
nucleotide, excluding gaps, in the ith column of the refined alignment A.

5. Map the consensus structure R back to the original alignment Ao by in-
serting unpaired gaps to the positions of R whose corresponding columns
are deleted in Step (2).

Notice that Equation 1.6 is used to compute the NE values only. To gen-
erate the optimal structure R in Step (4), we maintain a stack of pointers
that point to the substructures of loops with minimum energy density as we
compute the NE values. Once all the NE values are calculated and the energy
density of the optimal secondary structure R is obtained, we pop up the point-
ers from the stack to extract the optimal predicted structure. In step (5), we
map the bases (base pairs, respectively) for the columns (column pairs, respec-
tively) in A to their corresponding columns (column pairs, respectively) in Ao.
For example, consider Figure 1.2 again. In the figure, the refined alignment A
is obtained by deleting column 4 from the original input alignment Ao. The
bases for columns 1, 2, 3, 4 in A are mapped to columns 1, 2, 3, 5 in Ao. The
base pair between column 1 and column 9 in A becomes the base pair between
column 1 and column 10 in Ao; the base pair between column 2 and column
8 in A becomes the base pair between column 2 and column 9 in Ao. An
unpaired gap is inserted to the position corresponding to the deleted column
4 in Ao.

Let N be the number of sequences and no be the number of columns in the
input alignment Ao. Step (2) takes O(Nno) time. Step (3) takes O

(
n2

o

)
time.

Step (4) takes O
(
n3

o

)
time. Step (5) takes O(no) time. Therefore, the time

complexity of RSpredict is O
(
Nno + n3

o

)
, which is approximately O

(
n3

o

)
as

N is usually much smaller than no.
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1.3 Results

We conducted a series of experiments to evaluate the performance of
RSpredict and compared it with five related tools including KNetFold, Pfold,
RNAalifold, RSefold, and RSdfold. We tested these tools on Rfam [36] se-
quence alignments with different similarities. The Rfam sequence alignments
come with consensus structures. For evaluation purposes, we used the Rfam
consensus structures as reference structures and compared them against the
consensus structures predicted by the six tools. The similarity of a sequence
alignment is determined by the average pairwise sequence identity (APSI) of
that alignment [6]. In the study presented here, a sequence alignment is of
high similarity if its APSI value is greater than 75%, is of medium similarity
if its APSI value is between 55% and 75%, or is of low similarity if its APSI
value is less than 55%. The data sets used in testing included 20 Rfam se-
quence alignments of high similarity and 36 Rfam sequence alignments of low
and medium similarity. These data sets were chosen to form a collection of
sequence alignments with different (low, medium and high) APSI values, dif-
ferent numbers of sequences, as well as different sequence alignment lengths.
More specifically, the data sets contained sequence alignments that ranged in
size from 2 to 160 sequences, in length from 33 to 262 nucleotides and had
APSI values ranging from 42% to 99%.

The performance measures used in our study include sensitivity (SN ) and
selectivity (SL) [6], where

SN =
TP

TP + FN
(1.15)

SL =
TP

TP + (FP− ξ) . (1.16)

Here, TP is the number of correctly predicted base pairs (“true positives”),
FN is the number of base pairs in a reference structure that were not predicted
(“false negatives”) and FP is the number of incorrectly predicted base pairs
(“false positives”). False positives are classified as inconsistent, contradicting
or compatible [6]. When predicting the consensus secondary structure for a
multiple sequence alignment, a predicted base pair (i, j) is inconsistent if col-
umn i in the alignment is paired with column q, q �= j, or column j is paired
with column p, p �= i, and p, q form a base pair in the reference structure of the
alignment. A base pair (i, j) is contradicting if there exists a base pair (p, q) in
the reference structure of the alignment, such that i < p < j < q. A base pair
(i, j) is compatible if it is a false positive but is neither inconsistent nor contra-
dicting. The ξ in SL represents the number of compatible base pairs, which are
considered neutral with respect to algorithmic accuracy. Therefore ξ is sub-
tracted from FP. Finally, we used the Matthews correlation coefficient (MCC)
to combine the sensitivity and selectivity, where MCC is approximated to the
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geometric mean of the two measures, i.e., MCC ≈
√

SN× SL [18]. The larger
MCC, SN, SL values a tool has, the better performance that tool achieves and
the more accurate that tool is.

1.3.1 Performance evaluation on Rfam alignments
of high similarity

The first data set consisted of seed alignments of high similarity taken
from 20 families in Rfam. The APSI values of these seed alignments ranged
from 77% to 99%. The alignments ranged in size from 2 to 160 sequences and
in length from 33 to 159 nucleotides. Table 1.1 presents the accession number,
description, number of sequences, and length of the seed alignment of each of
the 20 Rfam families used in the experiment. The seed alignments of the 20
families are of high similarity; their APSI values are shown in the last column
of the table. The families are sorted, from top to bottom, in ascending order
on the APSI values. All six tools including RSpredict, KNetFold, RNAalifold,
Pfold, RSefold and RSdfold were tested on this data set.

The graphs in Figure 1.5 show the trend of the MCC, SN, and SL, which
are sorted in descending order for each tool under analysis. The X-axis shows,
therefore, the rank of the MCC (SN and SL, respectively) from highest to
lowest. For example, number 1 in the X-axis corresponds to the highest
score achieved by each tool. The Y-axis represents the MCC, SN, and SL,
respectively.

It can be seen from Figure 1.5 that RSpredict performed the best while
RSdfold performed the worst among the six tools. The Pfold tool had good
performance in selectivity but did not perform well in sensitivity and as a
result in MCC. It also suffered from a size limitation (the Pfold web server
can accept a multiple alignment of up to 40 sequences). Only 17 out of the 20
sequence alignments used in the experiment were accepted by the Pfold server;
the other three alignments (RF00386, RF00041, and RF00389) had more than
40 sequences and therefore could not be run on the Pfold server. RSpredict
had stable performance with the best mean 0.85 (standard deviation 0.16,
respectively) in MCC, while the other methods’ MCC values varied a lot and
had means (standard deviations, respectively) ranging from 0.37 to 0.82 (0.24
to 0.34, respectively).

1.3.2 Performance evaluation on Rfam alignments of
medium and low similarity

In the second experiment, we compared RSpredict with the other five
methods on multiple sequence alignments of low and medium similarity. The
test dataset included seed alignments of 36 families taken from Rfam [36].
The APSI values of the seed alignments ranged from 42 to 75%, the number
of sequences in the alignments ranged from 3 to 114, and the alignment lengths
ranged from 43 to 262 nucleotides. Table 1.2 presents the accession number,
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TABLE 1.1: Rfam alignments of high similarity.
Number of

Accession Description sequences Length APSI
RF00460 U1A polyadenylation

inhibition element (PIE)
8 75 77%

RF00326 Small nucleolar RNA Z155 8 81 79%
RF00560 Small nucleolar RNA

SNORA17
38 132 82%

RF00453 Cardiovirus cis-acting
replication element (CRE)

12 33 82%

RF00386 Enterovirus 5′ cloverleaf
cis-acting replication
element

160 91 83%

RF00421 Small nucleolar RNA
SNORA32

9 122 84%

RF00302 Small nucleolar RNA
SNORA65

8 130 84%

RF00465 Japanese encephalitis virus
(JEV) hairpin structure

20 60 86%

RF00501 Rotavirus cis-acting
replication element (CRE)

14 68 87%

RF00041 Enteroviral 3′ UTR element 60 123 87%
RF00575 Small nucleolar RNA

SNORD70
4 88 89%

RF00362 Pospiviroid RY motif stem
loop

16 79 92%

RF00105 Small nucleolar RNA
SNORD115

23 82 92%

RF00467 Rous sarcoma virus (RSV)
primer binding site (PBS)

23 75 93%

RF00389 Bamboo mosaic virus
satellite RNA
cis-regulatory

element

42 159 93%

RF00384 Poxvirus AX element late
mRNA cis-regulatory
element

7 62 93%

RF00098 Snake H/ACA box small
nucleolar RNA

22 150 93%

RF00607 Small nucleolar RNA
SNORD98

2 67 98%

RF00320 Small nucleolar RNA Z185 2 86 98%
RF00318 Small nucleolar RNA Z175 3 81 99%

description, number of sequences, and length of the seed alignment of each
of the 36 Rfam families used in the experiment. The seed alignments of the
36 families are of low and medium similarity; their APSI values are shown in
the last column of the table. The families are sorted, from top to bottom, in
ascending order on the APSI values.
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FIGURE 1.5: Comparison of the MCC, SN, and SL values of the six tools
under analysis on the seed alignments of high similarity taken from the 20
families listed in Table 1.1.
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TABLE 1.2: Rfam alignments of low and medium similarity.
Number of

Accession Description sequences Length APSI

RF00230 T-box leader 103 262 42%
RF00080 yybP-ykoY leader 50 131 44%
RF00515 PyrR binding site 72 125 47%
RF00557 Ribosomal protein L10 leader 66 149 48%
RF00504 Glycine riboswitch 93 111 50%
RF00029 Group II catalytic intron 114 94 52%
RF00458 Cripavirus internal ribosome

entry site (IRES)
7 203 54%

RF00559 Ribosomal protein L21 leader 33 81 54%
RF00234 glmS glucosamine-6-phosphate

activated ribozyme
11 218 55%

RF00556 Ribosomal protein L19 leader 24 43 55%
RF00519 suhB 13 80 56%
RF00379 ydaO/yuaA leader 25 150 58%
RF00380 ykoK leader 36 172 59%
RF00445 mir-399 microRNA precursor

family
13 119 59%

RF00522 PreQ1 riboswitch 22 47 59%
RF00095 Pyrococcus C/D box small

nucleolar RNA
25 59 60%

RF00442 ykkC-yxkD leader 11 111 60%
RF00430 Small nucleolar RNA SNORA54 5 134 60%
RF00521 SAM riboswitch

(alpha-proteobacteria)
12 79 61%

RF00049 Small nucleolar RNA SNORD36 20 82 63%
RF00513 Tryptophan operon leader 11 100 63%
RF00309 Small nucleolar RNA snR60/

Z15/Z230/Z193/J17
23 106 63%

RF00451 mir-395 microRNA precursor
family

21 112 64%

RF00464 mir-92 microRNA precursor
family

33 80 64%

RF00507 Coronavirus frameshifting
stimulation element

23 85 66%

RF00388 Qa RNA 5 103 70%
RF00357 Small nucleolar RNA R44/

J54/Z268 family
19 105 70%

RF00434 Luteovirus cap-independent
translation element (BTE)

17 108 71%

RF00525 Flavivirus DB element 111 76 71%
RF00581 Small nucleolar SNORD12/

SNORD106
8 91 71%

RF00238 ctRNA 48 88 72%
RF00477 Small nucleolar RNA snR66 5 105 72%
RF00608 Small nucleolar RNA SNORD99 3 80 72%
RF00468 Heaptitis C virus stem-loop VII 110 66 74%
RF00489 ctRNA 14 80 74%
RF00113 QUAD RNA 14 150 75%

The MCC, SN, and SL values are sorted in descending order for each tool
under analysis and placed in the graphs in Figure 1.6. TheX-axis shows, there-
fore, the rank of the MCC (SN and SL, respectively) from highest to lowest.
For example, number 1 in theX-axis corresponds to the highest score achieved
by each tool. The Y -axis represents the MCC, SN, and SL, respectively.
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FIGURE 1.6: Comparison of the MCC, SN, and SL values of the six tools
under analysis on the seed alignments of low and medium similarity taken
from the 36 families listed in Table 1.2.
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Comparing Figures 1.5 and 1.6, we see that the methods under analysis
generally performed better on sequence alignments of medium and low similar-
ity than on sequence alignments of high similarity. Like what was observed in
the previous experiment, RSdfold performed the worst (cf. Figure 1.5). The
structures predicted by RSdfold tend to be stem-like structures; therefore,
many structures, particularly those containing multibranched loops, were mis-
predicted. For this reason, RSdfold yielded very low MCC, SN and SL values.

RSpredict outperformed the other five methods based on the three per-
formance measures used in the experiment. The tool achieved a high mean
value of 0.94 in MCC, better than those of KNetFold (0.86), Pfold (0.88)
and RNAalifold (0.89). Similar results were observed for sensitivity and se-
lectivity values. Furthermore, RSpredict exhibited stable performance across
all the families tested in the experiment. The tool had an MCC, SN and SL
standard deviation of 0.08, 0.09 and 0.08, respectively. These numbers were
better than the standard deviation values obtained from the other five meth-
ods, which ranged from 0.11 to 0.34. Pfold suffered from a size limitation; it
could not generate a structure for the large seed alignments with more than
40 sequences in 9 families, including RF00230, RF00080, RF00515, RF00557,
RF00504, RF00029, RF00525, RF00238 and RF00468.

1.4 Conclusions

In this chapter we presented a software tool, called RSpredict, capable
of predicting the consensus secondary structure for a set of aligned RNA
sequences via energy density minimization and covariance score calculation.
Our experimental results showed that RSpredict is competitive with some
widely used tools including RNAalifold and Pfold on tested datasets, sug-
gesting that RSpredict can be a choice when biologists need to predict RNA
secondary structures of multiple sequence alignments, especially those with
low and medium similarity. Notice that RSpredict differs from KNetFold [31]
in that KNetFold is a machine learning method that relies on precompiled
training data derived from existing RNA secondary structures. RSpredict, on
the other hand, is based on a dynamic programming algorithm for folding
sequences and does not utilize training data.

Given a multiple sequence alignment Ao, our work is focused on predicting
the consensus structure of the aligned sequences inAo, rather than folding each
individual sequence in Ao. Our approach is to first transform Ao to a refined
alignment A by deleting columns with more than 75% gaps from Ao, then pre-
dict the consensus structure for A, and finally extend the consensus structure
by inserting gaps to the positions corresponding to the deleted columns in Ao

(cf. Figure 1.2). The predicted structure may not correspond exactly to any
individual sequence in the original alignment Ao. As an example, assume for
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simplicity that Ao is the same as A, i.e., no columns are deleted when getting
A from Ao. Consider a particular sequence S in Ao. Assume that the position
(column) i of S has a gap due to the alignment with the other sequences in
Ao. On the other hand, the position i in the consensus structure of Ao has
the most frequently occurring nucleotide in column i of Ao, which cannot
be a gap. As a result, the consensus structure of Ao, which is at least one
nucleotide longer than S, cannot be mapped exactly back onto S. In future
work we plan to look into ways for improving on consensus structure predic-
tion. Possible ways include the utilization of evolutionary information [37],
more sophisticated models of covariance scoring, and training data for more
accurate pairing thresholds.
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