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Abstract— Searching in ambient intelligence is complex be- 
cause it requires fine-grained tracking of human intentions, 
adapting to varying interests and intentions, and maintaining 
search accuracy in the context of fast content changes and 
increasing diversity of information. The paper describes details 
on some of the computational challenges by framing them at 
three levels: 1) a human interacting with a machine, 2) a small 
group of humans and machines collaborating, and 3) decision- 
support based on diverse and fast evolving information in the 
context of a large community of users and machines. Along  
with the challenges, some early glimpses of potential solutions 
are also discussed. 

I. INTRODUCTION 
A. Foundation 

We live in an age when 90% of the  information  the  
world has ever produced was generated in the last two 
years[1]. Information volume is growing, but so is the rate  
of information production (paced by faster compute cycles). 
To calibrate the pace, consider the fact  that  by  the  time 
you finished reading the last sentence, Google had processed 
about 80,000 search queries[1]. 

Information has become a critical component not just for 
conducting complex tasks. Information has become essential 
for supporting our livelihood in a day-to-day or perhaps even 
minute-to-minute manner. However, we are only at the early 
stages of conceptualizing and planning services that will 
ensure that humans can receive, interpret, use, and interact 
with information in a natural and timely way. 

Many challenges lie ahead. A critical  one  has  to  do 
with supporting search services. It is clear that we are 
moving toward broader deployments of ambient intelligence: 
environments that are all around us and rely on intelligent 
technologies such as IoTs, video trackers, and cloud-based 
information services (large knowledge bases, data analytics, 
and search tools) to support essential day-to-day services. It 
is also clear that without conceptualizing how search would 
function in such an environment, both at the machine and   
at the user level, little progress will be made for humans      
to function in ambient intelligence in a productive and safe 
way. 
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B. Aims 
In this vision paper, the aims include providing research 

directions in three specific ambient intelligence contexts: 1) 
human-machine communication in one-to-one settings, 2) 
humans and machines collaborating in small group settings, 
and 3) many humans and machines collaborating in complex 
environments asynchronously or synchronously (i.e., near 
real-time). 

The subsequent sections of the paper is organized as 
following. Critical search challenges will be discussed cate- 
gorized under the three ambient contexts. Upon discussions 
of potential limitations and gaps, some likely solutions that 
can address the challenges will be presented as well. 

II. SEARCH CHALLENGES 

The next three sections are: 1) Deeper Human Search 
Patterns, 2) Talking and Searching, and 3) Searching Diverse 
and Changing Knowledge. 

A. Deeper Human Search Patterns 
Imagine a human-machine interaction scenario where the 

human is engaged in a complex activity such as a medical 
diagnosis task. The user, in this case an expert clinical 
neurologist, is reviewing a set of magnetic resonance imaging 
data recently produced from a brain scan. The goal is to 
pinpoint the regions-of-interest (RoI) that are likely to be 
indicators of an early stage ailment such as Alzheimer’s 
disease. Although, the demand for information may vary 
depending on the specialty and the style of analysis, the latter 
task is intensely search dependent. Some of the searches are 
explicit and user-initiated, for example, looking up relevant 
cognitive scores1 or the genomics analysis profile. But many 
searches are context-dependent and they are triggered by 
user-behavior such as the cursor moving to a particular brain 
image location which draws the user’s attention. There is      
a need here for interest-profile driven personalized search  
(i.e., a good profile incorporating information from the 
patient would generate clinical guidelines and other relevant 
evidence). There is, however, a need for continuous search 
based on deep knowledge of the domain and near real-time 
searches that track the user’s behavior. We refer to this type 
of search as MAPS (micro-accuracy perennial search). 

In a complex task, MAPS need to execute almost simul- 
taneously as users interact with the information displayed. 
For example, as the user’s cursor moves proximal to the 
CGI score, the system should already be in a search mode 

1One of type of standard scores is known as Cognitive Global Impression 
or CGI, which is a score assigned by clinicians as an assessment of severity 
of mental illness relative to past patients with similar diagnosis. 
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to access and retrieve the score guideline, i.e., the definition 
and the clinical validation anchoring the guideline, and the 
recent cohort data on similar patients. 

Another example can be drawn from the annotation stage 
of the scan. Imagine that as the neuro-radiologist is con- 
ducting the annotation, the system retrieves similar regions 
of interest (RoI) from previously annotated scans in near 
real-time. Simultaneously, the system volumizes the RoI to 
improve clarity and provides key quantitative measurements 
of the RoI such as contextual distribution measures to 
indicate the relative aberrations associated with the  RoI.  
The latter annotation scenario is not unlike what happens     
in a modern Computer-Aided Design (CAD) tool, whereby 
the designer receives context-sensitive assistance on the size 
and the possible shape of an object being designed, near real-
time, based on intent and constraints  such  as  proxi- mal 
mechanisms/components, potential functions, and other 
fully-designed components that are similar with respect to 
mechanisms and functions. 

A critical challenge here is to deploy search functions that 
can operate based on ultra-fast intent detection – calibrated 
with the brain’s processing speed (sub 20 milliseconds). A 
broader challenge is to study behavior and human responses 
based on signals that are not post facto2. Fundamentally,     
to be able to develop theory-anchored, generalizable, and 
powerful modalities for supporting user’s actions it is critical 
that we create new methods for collecting and interpreting 
physiological and neurological data associated with user- 
machine interactions (called neurophysiological or NP data). 
Unfortunately, current methods to capture and track NP data 
such as eye gaze, focus, pupil dilation, skin temperature, 
electrodermal response, electroencephalogram (EEG), elec- 
trocardiogram (ECG), and functional magnetic resonance 
imaging (fMRI) have only been sparely utilized for studying 
search. Experimental methods that use NP for elucidating 
search are at an early stage of development and not well 
understood[2]. 

Few years ago, the famous AI researcher Tom Mitchell 
and his colleagues demonstrated that it is possible to train     
a neural network to predict the neuro-activation patterns of 
the brain based on nouns that the brain has not been exposed 
to before[3]. A corollary of this approach, if it were to be 
developed, could potentially reverse the process. In other 
words, at near real-time, as the user is formulating a thought 
or reflecting on a particular concept, then the corresponding 
noun term can be predicted. If such an inversion is possible, 
and it is a big caveat3, then it can become possible to 
calibrate and refine intent in a much more granular way and 
achieve significant improvement in perennial search. 

In another line of research it has been demonstrated 
2Human-computer interaction studies have traditionally relied on obser- 

vational approaches that monitor visible actions carried out by humans and 
use performance on tasks as data. 

3Miniaturization of brain scanning devices is advancing at a rather steady 
pace. For example, it is possible to create a scanning device based on 
magnetoencephalography which permits natural movements while capturing 
brain electrophysiological measurements at milliseconds resolution quite 
accurately[4] 

that there is a strong correlation between user’s relevance 
judgement and the items they gaze upon[2]. As can be seen 
in the figure below, there is a distinct difference in user’s 
reading patterns when he/she responds to items that are 
considered irrelevant vs. relevant. As the user transitions into 
interpreting and/or reading content it may be possible based 
on the gaze patterns to determine if an item is of interest to 
the user and begin to anchor intent-specific cues on such a 
pattern. 

 

Fig. 1. It is possible to segment the irrelevant content from the relevant 
content displayed based on users’ ga.ze-patterns[2] 

The challenge is that detecting deep and engaged patterns 
of use as shown in figure 1 demands significant time. 
However, on the positive side, the latency may provide 
affordances for MAPS to achieve better results. Another 
related approach that may boost MAPS results is anchor-   
ing intent on a different source of physiological signal. It   
has been shown that subtle changes in pupil dilation and 
pupil contraction are behavioral markers for relevance and 
irrelevance respectively[2]. An area which deserves closer 
examination for tracking physiological signals is the rate and 
quality of signal production based on reasonably priced and 
currently available devices (e.g., eye trackers). The trade- 
offs among cost vs. quality vs. usability and the influences 
on search results require further investigations. 

In general, ML-based classifier accuracy, in  the context  
of streaming data, is very much dependent on stream- 
complexity (volume, format, and noise) and the rate of data 
ingest. However, if the computation can be conducted using 
high-density parallel processor platforms it may be possible 
to achieve both efficient and effective response[5]. 

B. Talking and Searching 
"Air Canada 301, IFR Clearance", states a pilot sitting on 

the tarmac of an airport. The response from the tower is   
"Air Canada 301, Los Angeles Clearance Delivery. Calgary 
International Airport via the Gorman Four Departure, Shafter 
Transition, then as filed. 5000, Expect Flight Level Three  
Four Zero. Departure Frequency 124.30, Squawk 7201."  
The latter dialog may seem somewhat exotic but it is an 
extremely efficient and accurate way pilots and the  air  
traffic controllers (ATC) exchange messages4. One could 
argue that as both the pilot and the ATC staff are humans 

4There are several other conventions and specialized vocabularies used 
by ATCs. For some examples, see: https://www.vatsim.net/pilot-resource- 
centre/ifr-specific-lessons/ifr-clearances. 
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they could easily communicate in English and why do they 
choose to "complicate" matters by "speaking" in this pidgin 
format. It turns out using such pidgin languages allows fast 
exchanges to occur without sacrificing details and accuracy. 
The communication described here is emblematic of many 
such compact sub-languages that humans use to accomplish 
highly specialized tasks. For example, consider the dialog 
which takes place among the members of a surgical team 
while in an operating theater. The conversation may be less 
structured, but yet full of specialized terms and well-known 
turn-taking and transitions. 

As many years of research on natural language processing 
(NLP) has revealed, achieving smooth and natural commu- 
nication between humans and machines remains elusive. In 
currently available NLP-based applications, for example in 
Amazon Echo, users discover brittleness rather easily and 
they also “adapt” to such brittleness after a few hiccups5. 
However, for certain mission-critical tasks such as com- 
pleting a computer-aided design project or conducting an 
experiment with the aid of automated laboratory machines,  
it may be much more efficient and effective to rely on a 
highly compressed version of a human language. Such a 
language should have some of the advantages of human 
languages (e.g., English like words but with narrow and 
concrete semantic scopes) and contain few easy to remember 
syntactic rules (e.g., how nouns and verbs are combined). 

Of course, many computer languages have human-like 
"English" words. Command sets of Unix and DOS come    
to mind. However, these command sets are large and their 
syntactic combinations are not easy to remember. With the 
wider acceptability of IoTs, devices with built-in intelligence 
will continue to proliferate. The form factor of the intelli- 
gent devices, for example their size, their design, and their 
location or proximity may make it difficult to interact with 
them using conventional user interface features such as icons, 
menus, and mouse. 

The situation in an intelligent or ambient environments  
will become even more complex when multiple devices  
need to be used and collaborations among a small team of 
individuals and machines has to be orchestrated to accom- 
plish critical tasks (e.g., conducting a team-based scientific 
experiment). The most efficient way of accessing and manip- 
ulating specialized functions of devices and to ensure that 
team members performing a task together can follow and 
understand the commands is to verbally communicate the 
commands. The latter situation demands that the commands 
are easily understandable and  the  commands  are  limited  
in number to facilitate ease of memorization. The latter 
characteristics of the command set thus rules out specialized 
search languages such as SQL. A compact, task-centric set  
of commands, which is understandable and memorizable by 
humans, and can be processed efficiently and accurately 

 
5Almost in the same way humans overcome communication barriers when 

they are required to interact with people from another culture or country. 
For known obstacles with current NLP appliances and  applications and 
how large number of user-interactions are being harnessed to improve their 
accuracy, see: https://qz.com/1288743/. 

by machines could be the basis for a whole class of new 
languages to support team-based science and more generally 
complex team-based activities. 

A major recent effort by my research group involved 
development of a compact language, called the Minimum  
Dictionary Language (MDL), which we will deploy to sup- 
port specialized tasks. One use case we are experimenting 
with is “hands-free” interactions with mobile phones. As a 
pilot project, to simplify the situation, we selected a single 
human to machine interaction use case, involving searching 
and reviewing email messages from a mobile phone. Below, 
we offer some early glimpses of the email-MDL we created. 
Our hope is that it will generate critical analysis of our 
approach and bring focus to the area of compact human- 
machine languages that are designed to support specialized 
tasks. 

1) Language Definition: Our formal language definition is 
expressed using Extended Backus-Naur Form (EBNF). The 
intuition behind MDL will be first introduced and the formal 
definition will be presented at the end of this subsection. 

 
VP 

 

  
(NP) V' 

 

   
V NP NP 

return me N' 
 

  
N' CP 

 
with PDF 

N' CP 
  

the number of emails 
 

Fig. 2. Example of X-bar Structure of an Imperative Sentence 

When people try to retrieve information through a visual 
assistant, a command is usually used (a non-command sen- 
tence can of course be used as well, however, it should be 
able to be transferred into a command. For example, "I want 
an apple" equals to "give me an apple"). As in English, 
commands can be expressed with imperative sentences. Fig- 
ure 2 is an example  of  a  part  of  the  syntax  structure of 
an imperative sentence illustrated by X-bar theory [6]. Since 
our study focuses on the content of the command, everything 
above the Verb Phrase(VP) was omitted. In a retrieval task, 
the intention of a user should be getting desired results 
through a query. Thus, for example, if the  user wants  to 
find how many emails there are with PDF as attachment an 
efficient approach would be to choose transitive verbs similar 
to "return" or "tell" under the Verb(V) which serves as the 
action; and "me" under the first Noun Phrase (NP) which  
serves as the first objective. To make our grammar succinct, 
we only keep the second Noun Phrase(NP) which contains 
the object we desire and the modifier of the object. The object 
can be "the number of emails" as shown in the example, or 
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simply "emails". We call this part OPERATION, namely the 
object that we operate on. The second important part is the 
modifier which is composed of a Complementary Phrase(CP) 
"with PDF". We call this part SCOPE, namely the scope of 
the object that we care about. Therefore, we designed MDL 
as a tree structure with OPERATION and SCOPE as the first 
two branches. 

For OPERATION, we structured it through four main 
aspects: Who (who is the sender), When (the time stamp as- 
sociated with the origin or the creation of the message), What 
(the main topic of the message), and How (characteristics of 
the message, such as frequency, type of data contained, age 
of the message, language of the message, and importance of 
the message). 

For SCOPE, as MDL serves as a search tool for a personal 
information bank for messages, we design the SCOPE to     
be based on two critical structures of messages, namely the 
container and the content. 

2) Queries in MDL: Queries generated by users would 
typically concentrate on Container and content. For example, 
sometimes the focus of a query would be at the container 
level (i.e., not necessarily focus on the body of the message 
but on the labels used to describe the message container). 
A concrete example is "?’Selim’ LAST", meaning to retrieve 
the last message sent by Selim. Or, the user may request 
"?’Selim’ ALL", which means to retrieve all messages from 
Selim. Another similar query the user may issue is to retrieve 
all messages from an organization. For example: "?’IBM’ 

ALL". In this query the focus is not on the content of 
messages, rather, the focus is on the source of the messages. 

Therefore, it is a query with the focus on the container level. 
A query associated with container could be more complex 

– the attachment format can also be included. Possible 
queries are "?TOTAL EMAIL MSWORD": to retrieve all 
messages that contain MSWORD files; or "?TOTAL EMAIL 
PDF": to retrieve all messages that contain PDF files. These 
types of queries are still focused on messages as container, 
instead of as content. 

Content queries are another group of queries that focuses 
exclusively on what the messages actually are. A typical 
content query for retrieving all "Mike’s" messages on the 
upcoming "picnic" would be "?’Mike’ ON ’picnic’". Also, 
retrieving the last message on the upcoming "picnic" would 
be "?ON ’picnic’ LAST". 

Using the two primary dimensions, namely OPERATION 
and SCOPE, all MDL queries are created. Therefore, the 
grammar of the MDL query language can now be described 
in terms of the two dimensions and some additional details. 
Our goal is that by using MDL, users may maximize their 
need through succinct grammar and retrieve information as 
they desire. The structure of the design of MDL is shown in 
Figure 3. 

The motivation behind developing the email-MDL was    
to build the corresponding parser for querying personal 
messages based on easy to learn commands and realistic   
use cases. Specifically, keyword commands are implemented 
so that it is relatively easy for inexperienced users to com- 

 

 
 

Fig. 3. Structure of email-MDL 
 
 

prehend and learn. Also, as shown above, the email-MDL   
is clearly structured into  SCOPE  and  OPERATION  parts 
to match user-needs in a natural way. While the syntax of  
the email-MDL is limited to retrieval operations, a structure 
similar to the one shown in figure 3 in terms of organization 
of commands and the grammar can be easily created for 
other domains and operations. 

As stated, the grammar of an MDL is based on EBNF 
(Extended Backus-Naur Form) and it is formally defined by 
a set of commands as well as fields that support granular   
but powerful operations. A "?"  is used for the indication    
of the start of MDL query. Predefined commands at op 
(OPERATION) level contains ’TOTAL’, ’LAST’, and ’ON’; 
predefined commands at sc (SCOPE) level includes ’EMAIL’, 
’EMAIL from’ and ’EMAIL last’. User is supposed to give 
different inputs after these predefined commands for the 
completion of a MDL query. The formal EBNF definition 
for MDL is shown below. 

The email-MDL grammar was developed through a 
bottom-up tree structure. Initially, a basic grammar was 
defined. To develop the basic grammar, we followed the 
initial design of SCOPE and OPERATION. Next, the top 
level grammar was elaborated and made more explicit by 
combining the lower level elements. The elaboration was 
achieved by extending the grammar to support four specific 
use cases: covering the cases "Who", "What", "When", and 
"How". The actual implementation of the email-MDL was 
conducted using the Python Parsimonious module. 

With wide-spread availability of IoTs, development of 
smart devices with embedded intelligence, and creation of 
ambient places where many of us will work and live, a 
popular modality of interactions between humans and ma- 
chines will be verbal communication. We can also be fairly 
certain that search functions, either conducted explicitly or 
implicitly, as part of human-machine dialogs in such smart 
environments will be frequent. Therefore, we must attend    
to how search can be supported seamlessly, efficiently, and 
effectively as part of human-machine dialogs. 

C. Searching Diverse and Changing Knowledge 
When Andrew Grove, the famous leader and the former 

CEO of Intel, was diagnosed with prostate cancer he initially 
felt he was in good hands with the highly qualified doctors 

MDL 

OPERATION SCOPE 

Who When What How CONTAINER CONTENT 

eg. eg. eg. eg. eg. eg. 

?"Jason" ?LAST 1 day ?ON "Soccer" ?TOTAL EMAIL PDF 
 

ON "Picnic" 
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  Algorithm 1: EBNF Definition for MDL  
(all) ::= (space) (op) (space) (sc) 

(sc) ::= (sc_EMAIL_from) | (sc_EMAIL_attach) | 
(sc_EMAIL_piece) | (space) 

(sc_EMAIL_piece) ::= ’EMAIL last’ (space) 
(op_LAST_piece) 

(sc_EMAIL_from) ::= ’EMAIL from’ (space) 
(op_lit_name) 

(sc_EMAIL_attach) ::= ’EMAIL (space) (sc_attach) 

(sc_attach) ::= ’MSWORD’ | ’PDF’ | ’GIF’ 

(op) ::=  (op_trig) (space) (op_first)  (space) 

(op_first) ::= (op_TOTAL) | (op_LAST) | (op_lit_ON) | 
(op_lit_name) 

(op_lit_ON) ::= (op_lit_name)* (op_ON) (space) 
(op_lit_topic) (space) (sc_attach)* (space) 
(op_LAST)* 

(op_lit_topic) ::= ’ (chars) ’ 

(op_lit_name) ::= (’ ((chars) (space))+ ’ (space))+ 

(op_ON) ::= ’ON’ 

(op_LAST) ::= ’LAST’ (space) ((op_LAST_time) | 
(op_LAST_piece)) 

(op_LAST_piece) ::= ’[0-9]*’ 

(op_LAST_time) ::= ’[0-9]*’ (space) ’[a-z]+’ 

(op_TOTAL) ::= ’TOTAL’ 

(op_trig) ::= ’?’ 

(space) ::= ’ ’* 

    (chars)  ::=  ’[A-z0-9]*’  

 
 

he had access to. The journey he experienced to identify     
an appropriate treatment option, however, was frustrating, 
beguiling, and complex. Known as a person who preferred 
clarity and strict logic above anything, Andrew found himself 
shocked that what appeared on the surface to be a rather 
straight-forward situation turned out to be extremely cir- 
cuitous and uncertain[7]. After all, among scientific fields, 
medicine prides itself as one strictly anchored in and driven 
by current and rigorous scientific evidence. As Andrew 
started receiving advice from various medical experts, his 
understanding of the prognosis and treatment became less 
clear and the path to recovery hard to chart. 

For many situations, more than one decision or conclusion 
may stand out as equally “optimum” or relevant. When infor- 
mation gets produced at a voluminous rate and it originates 
from different sources, the situation can become even more 
complex, as resolving contradictions and/or weighing differ- 
ential consequences based on evidence becomes exceedingly 

difficult6. 
A potential way to reach a resolution  when  different  

facts appear to be equally correct or valid is to collect 
objective data from different sources. However,  even when  
it comes to indexing content from a single source, today’s 
advanced search systems perform rather poorly. First, the 
actual content of documents that are indexed is treated in a 
shallow way (i.e., indexing is not conducted  in a  domain- 
or knowledge-specific way). Second, when search engines 
do take into account the intellectual dimension of content, 
i.e., importance of evidence as determined by humans, it is 
also conducted in an indirect and rather perfunctory way: 
based on association of links to documents or association of 
keywords to documents clicked on. 

Aggregation of content, data, and documents will need to 
be radically re-engineered for supporting subtle and complex 
decision-making in ambient environments. The infrastructure 
of search, particularly in large and complex environments, 
such as the type of ambient environments we envision in    
the future, need to accommodate incorporation of knowledge 
collected from diverse and many human experts. The human 
experts may hold different perspectives, even on the same 
evidence or same facts and such opinions may change 
depending on specific situations. 

Additionally, with multitude of knowledge domains (or 
sources of evidence) and fast evolving knowledge, humans 
will need to rely on intelligent search  systems  that  can  
keep up with them in a continuous and adaptive way. Two 
potential computational paradigms could provide some new 
directions for searching on diverse and evolving knowledge. 
The first is inspired by Distributed Artificial Intelligence 
(DAI), particularly multi-agent systems[9]. The intelligent 
search aids will have their own knowledge representations 
(i.e., means for new knowledge detection and knowledge 
classification) and can bring to the user’s attention different 
evidence, along with confidence scores associated with the 
veracity of knowledge and the authority of their sources. 

Our lab conducted projects on multi-agent systems to 
support critical search functions such as distributed iden- 
tification, classification, and retrieval of information on 
behalf of users[10]. The environment, called Multi-Agent 
Collaboration for Classification of Information (MACCI) was 
designed for two broad purposes: 1) To understand agent  
dynamics during collaboration and 2) To establish trade-off 
between agent knowledge and the collaboration dynamics 
needed to achieve optimum performance. Agent dynamics 
refers to understanding collaboration patterns at a granular 
level, particularly how agents can identify collaborators, 
engage them appropriately, and utilize and update their 
knowledge to calibrate with global knowledge about domains 
and the agent community. The trade-offs are particularly 
important because agents cannot aspire to be “omnipontent”– 
possessing comprehensive knowledge about any domain or 
even the agent community. Such an approach would defeat 

 
6Biomedicine is the most vigorous and the fastest growing scholarly area 

among all STEM fields[8]. 
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the purpose of developing a distributed computing model  
and, more practically, it would not be viable to keep up with 
knowledge as typically produced, stored, disseminated, and 
updated. Hence, by design, an individual agent’s knowledge 
is always incomplete and the goal is to find complementary 
knowledge in other agents and accomplish the selection and 
retrieval tasks through intelligent coordination schemes and 
collaborations. 

information market approach has immense potential for 
supporting search in large and complex ambient intelligence. 
Information markets can draw upon mature theories from 
DAI and agent-based computational economics (e.g., see: 
https://www.predictit.org/support/what-is-predictit). In con- 
clusion, it should be pointed out that permuted, perennial, 
and pervasive search in ambient intelligence is at an early 
stage of development and new and exciting prospects for 
improving search, perhaps based on some of the key contri- 
butions from the areas described in this paper demand serious 
attention. 

 
 
 
 
 
 
 
 
 

Fig. 4. MACCI: A Collaborative Agent Community 

The task of searching for most relevant information in a 
vast, distributed, diverse, fast evolving, and sometimes con- 
tradictory7 set of information cannot be solved by assuming 
information is aggregated and searched from a single service. 
The overall problem space, in terms of both demands and 
sources, is too large and too complex to rely on a single 
centralized search model. Alternative search solutions that 
decouple the aggregation from the retrieval of relevant infor- 
mation are likely to be far superior than current approaches. 
Again drawing inspiration from DAI or multi-agent systems, 
we are likely to be better served if an universal standard were 
to be agreed upon for agent services (e.g., similar in scope 
and wide acceptability as say TCP/IP). With the aid of such 
a standard, the current Internet would go beyond an environ- 
ment which supports efficient information aggregation to one 
which supports both intelligent aggregation and searching. 
In such an environment every site with information available 
for access via the web, would also host information agents 
that offer two types of services: search on local content and 
communication with other agents it considers trustful. The 
latter functions, i.e., the communication and acquaintance list 
of trustful agents, would permit intelligent distributed search 
services to emerge. One viable approach for handling and 
resolving contradictions and ambiguities over diverse and 
changing information is the information market model[11], 
whereby agents can communicate with each other to find, 
validate, and generate potentially relevant information based 
on their past reputation in delivering reliable content. The 

 
7The problem of determining and retrieving accurate information in an 

environment which may in fact be deliberately set up for deception and 
influence peddling is related to identifying accurate information among 
contradictory set of evidence. However, there are other challenges such an 
environment poses such as dealing with metrics that anchor relevance on 
genuine but shallow sources such as links or click-throughs, or content 
fabrication that are near- or complete copies of the original. The area of 
avoiding the negative effects of adversarial or deceptive interactions in 
ambient search environments is a separate topic, which deserves its own 
treatment and I have not engaged in examining this area in depth here. 
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