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Studying the Clustering Paradox and Scalability of Search in Highly
Distributed Environments

WEIMAO KE, Drexel University

JAVED MOSTAFA, University of North Carolina at Chapel Hill

With the ubiquitous production, distribution and consumption of information, today’s digital environments
such as the Web are increasingly large and decentralized. It is hardly possible to obtain central control over
information collections and systems in these environments. Searching for information in these information
spaces has brought about problems beyond traditional boundaries of information retrieval (IR) research.
This article addresses one important aspect of scalability challenges facing information retrieval models
and investigates a decentralized, organic view of information systems pertaining to search in large-scale
networks. Drawing on observations from earlier studies, we conduct a series of experiments on decentralized
searches in large-scale networked information spaces. Results show that how distributed systems intercon-
nect is crucial to retrieval performance and scalability of searching. Particularly, in various experimental
settings and retrieval tasks, we find a consistent phenomenon, namely the Clustering Paradox, in which
the level of network clustering (semantic overlay) imposes a scalability limit. Scalable searches are well
supported by a specific, balanced level of network clustering emerging from local system interconnectivity.
Departure from that level, either stronger or weaker clustering, leads to search performance degradation,
which is dramatic in large-scale networks.
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1. INTRODUCTION

The growing magnitude, dynamics, and heterogeneity of today’s digital environments
such as the Web pose great challenges for finding information in them. While clas-
sic information retrieval systems conduct search operations by collecting and indexing
information in advance, this centralized model has suffered from the increasing decen-
tralization of information and systems [Baeza-Yates et al. 2007].
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We live in a distributed networked space, where information and intelligence are
highly distributed. In reality, people have different expertise, share information with
one another, and ask trusted peers for advice/opinions on various issues. The World
Wide Web is a good example of information distribution, where web sites serve narrow
information topics and tend to form communities through hyperlink connections [Gib-
son et al. 1998; Flake et al. 2002; Menczer 2004]. Likewise, individual digital libraries
maintain independent document collections and none claims to be all encompassing or
comprehensive. There is no single global information repository.

Because of the distributed nature of information and its size, dynamics, and het-
erogeneity, it is extremely challenging, if not impossible, to collect, store, and process
all information in one place for retrieval purposes. Centralized solutions will suffer
from its vulnerability to scalability demands [Baeza-Yates et al. 2007]. It has become
critical to investigate alternative models beyond the state-of-the-art retrieval systems,
particularly for searching a large, highly decentralized environment such as the Web.
A potential candidate is to take advantage of existing distributed computing powers
and design a new search architecture in which all systems can participate to help one
another find information.

This research studies the general problem of search and retrieval in a fully dis-
tributed/decentralized environment, where no global information is available nor can
a centralized index be built. Specifically, it focuses on query routing for decentralized
search and addresses the scalability challenge by integrating perspectives from in-
formation retrieval as well as complex network research. One aim is to understand
the influence of system interconnectivity and the emergent network structure on de-
centralized search performance, which is crucial to the design of network overlays for
scalable IR operations in these environments.

2. PROBLEM STATEMENT

It is a great challenge to perform effective and efficient retrieval operations in large,
dynamic, and heterogeneous information networks. Collection of information in ad-
vance and centralization of IR operations are hardly possible because systems are
dynamic (e.g., in the deep web) and information is distributed. A fully distributed ar-
chitecture is desirable and, due to many additional constraints, is sometimes the only
choice. What is potentially useful in such an information space is that individual sys-
tems (e.g., peers, sites, or agents) are connected to one another and collectively form
some structure (e.g., the Web graph of hyperlinks, peer-to-peer networks, and intercon-
nected services and agents in the Semantic Web). Many of these structures, according
to studies on complex networks, are small world networks in which there is a small
degree of separation between any two systems/nodes [Albert et al. 1999; Albert and
Barabási 2002; Barabási 2009].

While an information need may arise from anywhere in the space – for example, a
query can be issued to a Web system, raised by an information agent, or sent from a
connected peer – relevant information may exist in certain segments. There requires
a mechanism to help the two – the query and the resource – meet each other by either
delivering relevant information to the one who needs it or routing a query (representa-
tive of the need) where information can be retrieved. Potentially, intelligent algorithms
can be designed to help one traverse a short path to another in the networked space.

One might question why there has to be so much trouble to find information through
a network. A simple solution would be to connect a system to all other systems and
choose the relevant system from a full list. However, no one can manage to have a
complete list of all others and afford to maintain the list given the size of such a space.
The Web, for example, has more than hundreds of millions of sites and trillions of
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documents. It is hardly possible to implement and maintain a system that integrates
all.

2.1. Research Questions

Now let’s review the problem in its basic form. Let G(A,E) denote the graph of a net-
worked space, in which A is the set of all agents1 (nodes, sites, or peers) and E is the
set of all edges or connections among the agents. Agents have individual information
collections, know how to communicate with their direct (connected) neighbors, and are
willing to share information with them. Some agents’ information collections are par-
tially known. Many agents, given their dynamic nature, only provide some information
when properly queried – that their information cannot be collected in advance without
receiving a properly formulated query.

Depending on task contexts, agents may represent information seekers as well as
providers and mediators. Imagine an agent in the network, say, Au, receives an infor-
mation request, i.e., a query representation of an information need. Suppose another
agent Av, somewhere in the network, has relevant information for the need. Assume
that Au is not directly connected to and might not even know the existence of Av.
However, we reasonably assume that the network is a small world and there are short
paths from Au to Av. Now the basic question is:

PROBLEM 1. Can agents that are directly and/or indirectly known (connected) to
Au help identify Av such that Au’s query can be submitted to Av who in turn provides
relevant information back to Au?

One can reasonably propose a simple solution to the problem above through flooding
or breadth first search. However, flooding may achieve retrieval effectiveness at the
cost of coverage – it will reach a significant proportion of all agents in the network for
a single query. This type of solutions will not scale. A constraint here is that network
traffics should be minimized for each query. We should therefore consider efficiency:

PROBLEM 2. Efficiency: Given Av is findable for Au in a network, can the number of
agents involved in the search process be relatively small compared to the network size
so that each query only engages a very small part of the network?

More critically, the question about search scalability should be asked as well:

PROBLEM 3. Scalability: Can the number of agents involved in each query remain
small (on a relatively constant scale) regardless of the scale of network size? And how?

3. RELATED WORK

Related challenges for distributed search have been studied in areas of distributed
(federated) information retrieval, peer-to-peer networks, multi-agent systems, and
complex networks [Callan 2002; Crespo and Garcia-Molina 2005; Yu and Singh 2003;
Kleinberg 2006b; Meng and Yu 2010]. Recent distributed IR research has focused on
distributed database content (and characteristics) discovery [Si and Callan 2003a],
database selection [French et al. 1998; French et al. 1999; Hawking and Thomas 2005;
Shokouhi and Zobel 2007], and result fusion [Aslam and Montague 2001; Baumgarten
2000; Manmatha et al. 2001; Si and Callan 2005; Lillis et al. 2006]. Research has stud-
ied the effectiveness of database selection and result fusion given a relatively small
number of distributed, persistent information collections [Meng et al. 2002; Shokouhi

1An agent can be seen as a participating distributed system, which provides information and/or serves as
an intermediary.
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and Si 2011]. Their scalability to larger, unstable environments remains an important
question.

A peer-to-peer network often involves more than thousands, sometimes millions, of
distributed peers who dynamically join and leave the community. Distributed hashing
tables (DHTs) have been used in structured P2P environments for unique identifier
lookup. Some studies applied DHTs for partitioning an indexing space across redun-
dant peers for efficient location of popular information items [Luu et al. 2006; Skobelt-
syn et al. 2007]. Others proposed the use of this technique for search in the presence
of information overlap [Bender et al. 2005].

While DHT-based techniques are applicable in structured P2P environments, their
resilience to transient populations and adaptability to content and topology changes
remain open questions [Lua et al. 2005]. More important, when diverse information
needs are to be served, it is extremely challenging for such techniques to create and
maintain (update) a distributed index structure in a space- and traffic-efficient man-
ner. Flooding is often the technique employed for maintaining indexing currency, which
has received critiques for its computational costs.

DHTs, based on document-key-level index partitioning, are not the ideal technique
for information retrieval in distributed environments, particularly in unstructured
peer-to-peer networks. Alternative methods based on peer-level segmentation can be
used to support search efficiency and effectiveness [Bawa et al. 2003; Liu et al. 2006;
Lu and Callan 2006]. Reorganization of collections around content clusters/topics was
proposed to improve distributed retrieval effectiveness [Xu and Croft 1999].

Semantic overlay networks (SONs), based on peer segmentation, have been widely
used for distributed IR operations in unstructured networks [Tang et al. 2003; Crespo
and Garcia-Molina 2005; Cooper and Garcia-Molina 2005; Doulkeridis et al. 2008]. In
SONs, peers with semantically similar content are clustered together, which in turn
form a global (hierarchical) structure for efficient query routing [Crespo and Garcia-
Molina 2005]. These techniques were shown in experiments to improve retrieval per-
formance.

One popular approach to SONs was to form a hierarchical network structure through
re-organization of distributed systems/peers, in which super-peers assumed greater re-
sponsibilities for bridging/mediating across segments. However, some questioned the
reliability of such an architecture as attacks on super peers (nodes or agents) can
lead to a large disconnected structure [Albert and Barabási 2002; Lua et al. 2005]. In
addition, as Lu [2007a] observed, updating super-peers for changes in distributed col-
lections is traffic intensive and may cause problems in environments where bandwidth
is limited.

Regardless of various approaches to peer re-organization and segmentation, the un-
derlying network structure appears to play an important role in conducting effective
and efficient retrieval operations in distributed settings. As individual systems inter-
connect to form a global structure, finding relevant information in decentralized en-
vironments transforms into a problem concerning not only information retrieval but
also complex networks. Understanding network structure or system interconnectivity
will provide guidance on how decentralized search and retrieval methods can function
in these information spaces.

In a variety of large interconnected environments, it is well known that any pair of
individual nodes are separated by a very small number of others. In other words, small
diameters are a common feature of many naturally, socially, or technically developed
communities – a phenomenon known as small world or six degrees of separation [Mil-
gram 1967; Watts 2003]. The small world phenomenon also appears in various types
of large-scale digital information networks such as the World Wide Web [Albert et al.
1999; Albert and Barabási 2002] and the network for email communications [Dodds

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 3, Publication date: April 2013.



Studying the Clustering Paradox and Scalability of Search in Highly Distributed Environments 3:5

et al. 2003]. The small degree of separation shows promises on efficient traversal of
such a network to reach any desired targets. Nonetheless, it remains challenging to
identify shortcuts to relevant targets in the information retrieval context, where rele-
vant as well as non-relevant information collections are all within short distances.

Network clustering represents one approach to understanding how network charac-
teristics can be taken advantage of for efficient traversal of relevant paths. One level of
clustering, in P2P research, is the identification of similar peers and segmentation of
them based on topical relevance. As we discussed, semantic overlay networks (SONs)
have been widely used for retrieval effectiveness and efficiency [Bawa et al. 2003; Cre-
spo and Garcia-Molina 2005; Lu 2007b; Doulkeridis et al. 2008]. Clustering enables
similar peers to connect to each other and sometimes allows super peers to coordi-
nate local reconstruction and to update remote connections for efficient query routing.
Query propagation in local segments often leads to improved recall [Bawa et al. 2003;
Lu 2007b].

Research on complex networks studies the problem in its basic form and shows
promises as well. Particularly, studies showed that, with local intelligence and ba-
sic information about targets, members of a very large network are able to find very
short paths (if not the shortest) to destinations collectively [Milgram 1967; Kleinberg
2000; Watts et al. 2002; Dodds et al. 2003; Liben-Nowell et al. 2005; Boguñá et al.
2009]. The implication in IR is that relevant information, in various networked envi-
ronments, is not only a few degrees (connections) away from the one who needs it but
potentially findable. This provides the potential for distributed algorithms to traverse
such a network to find relevant information efficiently.

In this respect, Kleinberg [2000] conducted one of the key studies on decentralized
search in small world networks. The research, based on an abstract lattice model and a
clustering exponentα to control network clustering, discovered that some critical value
of α enables optimal search efficiency. Particularly, in a d dimensional space, search
time (or the number of hops required to reach a target) is bounded by c log2 N only
when α = d, where N is network size. When α becomes either larger or smaller, search
performance is greatly degraded. In other words, neither weak clustering nor strong
clustering is desirable. A specific, balanced level of clustering must be maintained for
search efficiency. Related studies on complex network search provided results consis-
tent to this finding [Watts et al. 2002; Dodds et al. 2003; Liben-Nowell et al. 2005;
Kleinberg 2006a; Boguñá et al. 2009]. In distributed IR settings, nonetheless, this re-
mains a phenomenon to be scrutinized and understood.

In short, network structure, i.e., how distributed system interconnect, matters to
search efficiency and scalability. While structural properties such as network cluster-
ing are manifestations of underlying dynamics of a network, network formation can be
guided for related properties to be optimized to improve retrieval efficiency. Research
needs to understand the optimal network structure for search so that mechanisms
such as semantic overlying can be better designed to obtain the desired structural
properties. For a better understanding of the impact in the large-scale IR context, it
requires in-depth experimental examination of various IR tasks, proper control and
isolation of important variables, and further analysis of retrieval performance at a
larger scale using evaluation methods pertinent to individual tasks. This article re-
ports on important findings from a series of large-scale distributed IR experiments.

4. RESEARCH ANGLE AND HYPOTHESES

Finding relevant information in distributed environments is a problem concerning
complex networks and information retrieval. We know from the small world phe-
nomenon, common in many real networks, that every piece of information is within
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a short radius from any location in a network. However, relevant information is only a
tiny fraction of all densely packed information in the “small world.”

If we allow queries to traverse the edges of a network to find relevant information,
there has to be some association between the network space and the relevance space in
order to orient searches. Random networks could never provide such guidance because
edges are so independent of content that they have little semantic meaning. Fortu-
nately, research has discovered that development of a wide range of networks follows
not a random process but some preferential mechanism that captures “meanings.”

Surely, these networks, even with a good departure from randomness, do not auto-
matically ensure efficient findability of relevant information. To optimize such a net-
work for search, mechanisms should be designed to enable more meaningful semantic
overlay on top of physical connections. In peer-to-peer information retrieval research,
such techniques as semantic overlay networks have been widely used. A better un-
derstanding of the impact of structural properties on distributed search is critical to
further development of these techniques.

4.1. Information Network and Semantic Overlay

Let us refer to the type of networks in this research as information networks to em-
phasize the focus on finding relevant information. Practically, information networks
include, but are not limited to, peer-to-peer networks for information sharing, the
Web where many sites/systems/databases reside, and networks formed by information
agents. Close examination of these networks reveals some common characteristics il-
lustrated in Figure 1.

Fig. 1. Information Network

As shown in Figure 1, an information network is formed by nodes (e.g., peers,
web sites, or agents) through edges, e.g., by means of network communica-
tion/interaction/links. A node has a set of information items or documents, which in
turn can be used to define its topicality. If we can discover the content of each node and
layout the nodes in terms of their topicality, then the information network in Figure 1
may be visualized in the form of Figure 2 (a).

Figure 2 (a) shows a circle representation of the topical (semantic) space, in which
there are two topical clusters of nodes, i.e., cluster 1-3-5-7 and cluster 2-4-6 (visually
separated on the topical circle space). Connection-wise, there are local edges (solid
lines) within each cluster and long-range ones (dashed lines) between the clusters.

Within-group local connections are useful because they bring “close” (topically sim-
ilar) nodes together to form segments, which is consistent to their topical separation.
This establishes an important association between the topological (network) space and
the topical (search) space that potentially guides searches. In terms of Granovetter
[1973], these are strong ties.
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Fig. 2. Evolving Semantic Overlay

Long-distance connections, shown as dashed lines in Figure 2, bring randomness
to the network. When there are many long-distance connections, the topological (net-
work) space tells little about the topical (search) space – we can hardly rely on topically
non-relevant edges in the search for topical relevance. Nonetheless, between-group
connections, or weak ties, often serve as bridges and are critical for efficient diffusion
of information [Granovetter 1973].

While the initial network, shown in Figure 2 (a), might not be good enough for de-
centralized search, some overlay can be built upon the physical layer to bring more
semantics to the network space. Due to no global control over such an information
network, mechanisms should be designed to guide individual adaptation and network
evolution for this purpose. Over the course of network development shown in Figures 2
(a), (b), and (c), semantic overlay is strengthened through the reinforcement of strong
ties and reestablishment of some weak ties. Note that semantic overlay is a logical
(soft) layer of interconnectivity – even if two nodes are physically connected, seman-
tic overlay may maintain a probability function that keeps them from contacting each
other for search.

4.2. Clustering Paradox

Here we elaborate on the Clustering Paradox mentioned earlier. Semantic overlay il-
lustrated above is essentially a type of clustering, which is the process of bringing sim-
ilar items together [Berry 2004]. Research has found clustering at various levels useful
for information retrieval. The Cluster Hypothesis states that relevant documents are
more similar to one another than to non-relevant documents and therefore closely re-
lated documents tend to be relevant to the same requests [van Rijsbergen and Sparck-
Jones 1973]. Traditional IR research utilized document-level clustering to support ex-
ploratory searching and to improve retrieval effectiveness [Hearst and Pedersen 1996;
Fischer and Nurzenski 2005; Ke et al. 2009].

Distributed information retrieval, particularly unstructured peer-to-peer IR, relied
on peer-level clustering for better decentralized search efficiency. Topical segmentation
based techniques such as semantic overlay networks (SONs) have been widely used
for efficient query propagation and high recall [Bawa et al. 2003; Crespo and Garcia-
Molina 2005; Lu and Callan 2006; Doulkeridis et al. 2008]. Hence, overall, clustering
was often regarded as beneficial whereas the potential negative impact of clustering
(or over-clustering) on retrieval has often been overlooked.

Research on complex networks has found that a proper level of network clustering
with some presence of remote connections has to be maintained for efficient searches
[Kleinberg 2000; Watts et al. 2002; Liben-Nowell et al. 2005; Simsek and Jensen 2008;
Boguñá et al. 2009]. Clustering reduces the number of “irrelevant” links and aids in
creating topical segments useful for orienting searches. Without sufficient clustering,
the network has too much randomness to guide efficient traversals because weak ties
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dominate. While searches may jump quickly from one place to another (hops) in the
network space, there is no “gradient” to lead them toward targets. With very strong
clustering, on the other hand, a network tends to be fragmented into local communities
with abundant strong ties but few weak ties to bridge remote parts [Granovetter 1973;
Singh et al. 2001]. Although searches might be able to move gradually toward targets,
necessary “hops” become unavailable.

As discussed earlier, we refer to this phenomenon as the Clustering Paradox, in
which neither strong clustering nor weak clustering is desirable. In other words,
trade-off is required between strong ties for search orientation and weak ties for effi-
cient traversal. In Granovetter’s terms, whereas strong ties deal with local connections
within small, well-defined groups, weak ties capture between-group relations and serve
as bridges of social segments [Granovetter 1973]. The Clustering Paradox, seen in light
of strong ties and weak ties, has received attention in complex network research but
requires close scrutiny in a decentralized IR context.

4.3. Function of Clustering Exponent α

One key parameter widely used in complex network research for studying the impact of
clustering is the clustering exponent α. Kleinberg [2000] studied decentralized search
in small world using a two dimensional model, in which peers had rich connections
with immediate neighbors and sparse associations with remote ones. The probability
pr of connecting to a neighbor beyond the immediate neighborhood was proportional to
r−α, where r was the search distance between the two in the dimensional space and α a
constant called clustering exponent2. It was shown that only when clustering exponent
α = 2, search time (i.e., search path length) was optimal and bounded by c(logN)2,
where N was the network size and c was some constant [Kleinberg 2006b].

The clustering exponent α, as shown in Figure 3, describes a correlation between the
network (topological) space and the search (topical) space [Kleinberg 2000; Boguñá
et al. 2009]. When α is small, interconnectivity has little dependence on topical close-
ness – local segments become less visible as the network is built on increased ran-
domness. As shown in Figure 4 (a), the network is a random graph given a uniform
connectivity distribution at α = 0. When α is large, weak ties (long-distance connec-
tions) are rare and strong ties dominate [Granovetter 1973]. The network becomes
highly segmented. As shown in Figure 4 (c), when α → ∞, the network is very regular
(highly clustered) given that it is extremely unlikely for remote pairs to connect. Given
a moderate α value, as shown in Figure 4 (b), the network becomes a narrowly defined
small world, in which both local and remote connections are present.

In this way, the clustering exponent α influences the formation of local clusters and
overall network clustering. The impact of α ∈ [0,∞) on network clustering is similar
to that of a rewiring probability p ∈ [1, 0] in Watts and Strogatz [1998]. However, α
additionally defines the association of interconnectivity and topical distance. It was
further discovered that optimal value of α for search, in many synthetic networks
previously studied, depends on the dimensionality of the search space. Specifically,
when α = d on a d-dimension space, decentralized search is optimal. Further studies
conducted by various research groups have shown consistent results [Watts et al. 2002;
Liben-Nowell et al. 2005; Simsek and Jensen 2008; Boguñá et al. 2009]. The results
were primarily obtained in research on low dimensional synthetic spaces using highly
abstract models. Its implications in IR settings have yet to be scrutinized.

2The clustering exponent α is also known as the homophily exponent [Watts et al. 2002; Simsek and Jensen
2008].
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Fig. 3. Network Clustering: Function of Clustering Exponent α

α = 0 α = 2.5 α → ∞
(a) Random (b) Small World (c) Regular

Fig. 4. Network Clustering: Impact of Clustering Exponent α. Compare to Watts and Strogatz [1998]. (a)
a random network, provided no association between interconnectivity and topical distance at α = 0, (b) a
small world network when a moderate α value allows the presence of both local and remote connections, and
(c) a regular network where nodes only connect to local neighbors at α → ∞ (simulated given α = 1000).
The figures were produced by simulations based on n = 24 nodes and k = 4 neighbors for each. Topical
distance is measured by the angel between two nodes (vectors from the origin/center) in the 1-sphere (circle)
representation.

5. HYPOTHESES

Earlier discussions provide evidence for potential hypotheses. In sections 4.2 and 4.3,
we discussed previous research on the impact of network clustering on decentralized
search and our observation of the Clustering Paradox, which appears to suggest the
following hypothesis.

HYPOTHESIS 1. Given local constraints3 of a network, there exists some balance of
network clustering that enables optimal search performance in an IR context.

Given the balance or optimization, we further conjecture that some local search al-
gorithm without global information is scalable to very large network sizes. In other
words, search performance should remain more or less stable (with no dramatic
change) even when the network grows dramatically. This leads to the second hypothe-
sis.

3Local constraints refer to limited capacities of individual agents/peers, e.g., the number of connections an
agent can manage.
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HYPOTHESIS 2. With optimal network clustering, search efficiency4 is explained by
a poly-logarithmic function of network size.

We have known that scale-free properties such as power-law degree distribution
appear in many real networks, in which research has found good scalability and ro-
bustness [Albert and Barabási 2002]. Although degree distribution may interact with
network clustering on search performance, we tend to believe that such networks, re-
gardless of their differences, support scalable decentralized search operations. In other
words,

HYPOTHESIS 3. Power-law degree distributions have an impact on network opti-
mization for search – that is, different distributions may require different network clus-
tering levels for optimal search. However, Hypotheses 1 and 2 remain true with different
degree distributions.

While most search methods rely on topical relevance, research has also found degree-
based methods effective in power-law networks in which hubs have rich connectivity
[Adamic et al. 2001; Boguñá et al. 2009]. We therefore conjecture that:

HYPOTHESIS 4. In large-scale information networks, search (neighbor selection)
methods that utilize information about neighbors’ degrees and relevance (similarity to
a query) are among scalable algorithms stated in Hypotheses 1 and 2.

6. SIMULATION FRAMEWORK OVERVIEW

In this research, we proposed to use multi-agent systems for a bottom-up investigation
of decentralized IR functions. According to [Jennings and Wooldridge 1998; Huhns
1998], an agent is an active computational entity situated in some environment, and
that is capable of autonomous action in this environment in order to meet its design
objectives. While single-agent systems focus on the individual agent as the functional
unit, multi-agent systems emphasize the societal view of agents and their collective
capability. Multi-agent systems provide a new paradigm in which a complex system
– a decentralized information retrieval system in this research – can be naturally de-
composed into autonomous, heterogeneous, and cooperative components to cope with
the complexity and unpredictability of the environment [Jennings 2001].

Based on multi-agent systems, we have developed a decentralized search platform
named TranSeen for finding relevant information distributed in networked environ-
ments. Each agent represents an IR system, which has its document collection and
can connect to others to route queries. We emphasize the societal view of agents who
have local intelligence and can collaborate with one another to perform global search
tasks. We illustrate the conceptual model in Figure 5 (a) and elaborate on major com-
ponents shown in Figure 5 (b).

Figure 5 (a) visualizes a 2D circle (1-sphere) representation of the information space.
Let agent Au be the one who has an information need whereas agent Av has the rele-
vant information. The problem becomes how agents in the connected society, without
global information, can collectively construct a short path to Av. When an agent re-
ceives a query, it first runs a local search operation to identify potential relevant infor-
mation from its individual document collection. If local results are unsatisfactory, the
agent will send the query to neighbors based on a predicting function using the query
representation and information about neighbors. In Figure 5 (a), the query traverses
a search path Au → Ab → Ac → Ad → Av to reach the target. While agents Ab and Ad

help move the query toward the target gradually (through strong ties), agent Ac has

4Efficiency, or search time, will be measured by search path length in tasks performed by best search algo-
rithms.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 3, Publication date: April 2013.



Studying the Clustering Paradox and Scalability of Search in Highly Distributed Environments 3:11

(a) Global View (b) Local View

Fig. 5. Conceptual Framework. (a) Global view of agents work together to route a query in the network
space. (b) Local view of how components function within an agent’s neighborhood.

a remote connection (weak tie) for the query to “jump.” The entire network topology is
self-organized by agents using an interconnectivity probability function supervised by
clustering exponent α, which we discuss in Section 7.

7. ALGORITHMS

In the previous section, we described the TranSeen multi-agent framework for de-
centralized information retrieval experiments. Figure 5 (b) illustrates how various
components work together within each agent or system. The TranSeen system was
implemented in Java, based on two well-known open-source platforms: 1) JADE, a
multi-agent system/middle-ware that complies with the FIPA (the Foundation for In-
telligent Physical Agents) specifications [Bellifemine et al. 2007], and 2) Lucene, a
high-performance library for full-text search [Hatcher et al. 2010].

This section elaborates on specific algorithms implemented in the TranSeen frame-
work and used in the research. Section 7.1.1 presents the TF*IDF weighting scheme
for information representation (to represent documents and queries) while sec-
tion 7.1.2 discusses a similar method we refer to as DF*INF for neighbor (agent) rep-
resentation. Section 7.1.3 discusses the coefficient for measuring the similarity of two
information items. Section 7.2 describes five search (neighbor selection) algorithms
based on neighbor relevance (similarity) and/or connectivity. Section 7.3 elaborates on
the function for agent interconnectivity (clustering) based on clustering exponent α and
degree exponent γ.

7.1. Basic Functions

7.1.1. TF*IDF Information Representation. We use the Vector-Space Model (VSM) for in-
formation (document and query) representation [Baeza-Yates and Ribeiro-Neto 2004].
Given that information is highly distributed, a global term space is not assumed. In-
stead, each agent processes information it individually has and produces a local term
space, which is used to represent each information item using the TF*IDF (Term Fre-
quency * Inverse Document Frequency) weighting scheme. An information item is then
converted to a numerical vector where a term t was computed by:

W (t) = tf(t) · log(
N

df(t)
) (1)

where tf(t) is the frequency of the term t of the term space in the information item, N
is the total number of information items (e.g., documents) in an agent’s local collection,
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and df(t) is the number of information items in the set containing the term t of the term
space. We refer to log( N

df(t) ) as IDF. IDF values are computed within the information

space of an agent given no global information.

7.1.2. DF*INF Agent Representation. For neighbor (agent) representation, we use a sim-
ilar mechanism. Specifically, we assume agents are able to collect their direct neigh-
bors’ document frequency (DF) information and use it to represent each neighbor as a
meta-document of terms. Distributed IR research has shown DF information useful for
collection selection [Callan et al. 1995; Callan and Connell 2001; Powell and French
2003]. Treating each meta-document as a normal document, it becomes straightfor-
ward to calculate neighbor frequency (NF) values of terms, i.e., the number of meta-
documents (neighbors) that contains a particular term. A meta-document (neighbor) is
then represented as a vector where term t is computed by:

W ′(t) = df ′(t) · log(
N ′

nf ′(t)
) (2)

where df ′(t) is the frequency of the term t of the term space in the meta-document,
N ′ is the total number of an agent’s neighbors (meta-documents), and nf ′(t) is the
number of neighbors containing the term t. We refer to this function as DF*INF, or
document frequency * inverse neighbor frequency.

7.1.3. Similarity Scoring Function. Based on the term vectors produced by the TF*IDF
(or DF*INF) representation scheme described above, pair-wise similarity values can
be computed. Given a query q, the similarity score of a document d matching the query
is computed by :

∑

t∈q

W (t) · coord(q, d) · queryNorm(q) (3)

where W (t) is the weight of term t given by equation 1 or 2, coord(q, d) a coordi-
nation factor based on the number of terms shared by q and d, and queryNorm(q) a
normalization value for query q given the sum of squared weights of query terms. The
function is a variation of the well-known cosine similarity measure adopted in Lucene
[Baeza-Yates and Ribeiro-Neto 2004; Hatcher et al. 2010]. Given a query, an agent
will use this scoring function to rank its local documents and determine whether it
has relevant information. In addition, when an agent has to contact a neighbor for
the query, similarity-based neighbor selection methods will use this to evaluate how
similar/relevant a neighbor is to a query.

7.1.4. Retrieval Federation/Fusion Method. In some of the search tasks (e.g., Relevance
Search and Authority Search tasks described in Section 8.3), search results will con-
tain a rank list of relevant documents from multiple distributed systems. Result fu-
sion/federation has been an important research topic in distributed IR. Drawing on
basic ideas from classic federation models such as CORI and GlOSS [Gravano et al.
1994; Callan et al. 1995; French et al. 1999], the following method is used in our ex-
periments.

First, when a search is finished (i.e., a query finishes traversing a network for rele-
vant documents), the method will select top ns (5 in the experiments) systems whose
meta-documents are most relevant/similar to the query (based on the DF*INF and
similarity scoring functions described above). Each of the selected systems is queried
again to provide a list of top nd (e.g., 20) most relevant documents. Given similarity
score Sd of document d from a system with a meta-document similarity score Sm, the
document’s similarity score is then normalized to:
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S′

d = Sd · Sm (4)

All the ns · nd documents are sorted in terms of their normalized scores S′

d. Only
top nT (a predefined parameter in each experiment, 10 in relevance and authority
searches, and 3 in TREC web track tasks) documents will be retrieved as search re-
sults. Results will then be evaluated using normalized discounted cumulative gain
(nDCG) at position nT described in section 8.5 [Jarvelin and Kekalainen 2002].

7.2. Neighbor Selection Strategies (Search Algorithms)

The similarity scoring function in Equation 3 can produce output about each neighbor’s
similarity/relevance to a query. Based on this output, we further propose the following
strategies to decide which neighbors should be contacted for the query. Each search will
keep track of all agents on the search path. All strategies below will ignore neighbors
who have been contacted for a query to avoid loops. These strategies will be tested and
compared in experiments.

7.2.1. Random Walk (RW): Effectiveness Lower-bound. The Random Walk (RW) strategy
ignores knowledge about neighbors and simply forwards a query to a random neigh-
bor. Without any learning module, Random Walk is presumably neither efficient nor
effective. Hence, the Random Walk will serve as the search performance lower-bound.

7.2.2. SIM Search: Similarity-based Greedy Routing. Let k be the number of neighbors an
agent has and S = [s1, .., sk] be the similarity vector about each neighbor’s similar-
ity/relevance to a query. The SIM method sorts the vector and forwards the query to
the neighbor with the highest score. With greedy routing, only one instance of the
query will be forwarded from one agent to another until relevant information is found
or some predefined conditions are met (e.g., the maximum search path length or Time
to Live (TTL) is reached).

To obtain the similarity vector given a query, neighbors should be represented to re-
flect document collections they have. Query-based sampling techniques can be used to
obtain this information. In order to simplify the process and focus on major retrieval
challenges, we assume that agents are cooperative – that is, they share with one an-
other document frequency (DF) values of key terms in their collections, based on which
a meta-document can be created as representative of a neighbor’s topical area. A query
is then compared with each meta-document, represented by DF*INF (see Equation 2),
to generate the cosine similarity vector S.

7.2.3. DEG Search: Degree-based Greedy Routing. In the degree-based strategy, we fur-
ther assume that information about neighbors’ degrees, i.e., their numbers of neigh-
bors, is known to the current agent. Let D = [d1, .., dk] denote degrees of an agent’s
neighbors. The DEG method sorts the D vector and forwards the query to the neigh-
bor with the highest degree, regardless of what a query is about. Related degree-
based methods were found to be useful for decentralized search in power-law networks
[Adamic et al. 2001; Adamic and Adar 2005].

7.2.4. SimDeg: Similarity*Degree Greedy Routing. The SimDeg method is to combine in-
formation about neighbors’ relevance to a query and their degrees. Simsek and Jensen
[2008] reasoned that a navigation decision relies on the estimate of a neighbor’s dis-
tance from the target, or the probability that the neighbor links to the target directly,
and proposed a measure based on the product of a degree term (d) and a similarity term
(s) to approximate the expected distance. Following the same formulation, the SimDeg
method uses a combined measure SD = [s1 · d1, .., sk · dk] to rank neighbors, given
neighbor relevance vector S = [s1, .., sk] and neighbor degree vector D = [d1, .., dk]. A
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query will be forwarded to the neighbor with the highest sd value. Simsek and Jensen
[2008] showed that this combined method is sensitive to the ratio of values between
two neighbors, not the actual values that might not be accurately measured.

7.2.5. SimPGS: Size-based Database Selection. Collection size (the number of documents)
is an important characteristic for resource selection in federated search [French et al.
1999; Thomas and Hawking 2009]. Si and Callan [2003b] introduced a database selec-
tion method in which the estimated relevance of a database given a query q is com-
puted by

∑
p(rel|d)p(d|C)Nc, where p(rel|d) is the probability of a document d being

relevant and Nc the collection size to be estimated. In this work, we assume collection
sizes are known to neighbors to avoid further complexity of database sampling and
size estimation. Replacing

∑
p(rel|d)p(d|C) with an overall collection (meta-document)

relevance/similarity score Sc, SimPGS is computed by Sc · Nc. We use this method in
the TREC’09 Web track tasks described in section 8.2.

7.3. System Interconnectivity and Network Clustering

For network clustering, the first step is to determine how many links (degree du) each
distributed system u should have. Once the degree is determined, the system will in-
teract with a large number of other systems (from a random pool) and select only du
systems as neighbors based on a connectivity probability function guided by the clus-
tering exponent α.

In experiments on the ClueWeb09B collection, we collect information about each web
site (treated as an agent/system) incoming hyperlinks and normalize the in-degrees as
their du values. We control the range of degree distribution [dmin, dmax] for the normal-
ization and study its impact on search performance. Given the number of incoming
hyperlinks d′u of system u, the normalized degree is computed by:

du = dmin +
(dmax − dmin) · (d

′

u − d′min)

d′max − d′min

(5)

where d′max is the maximum degree value in the hyperlink in-degree distribution
and d′min the minimum value in the same distribution. Once degree du is determined
from the degree distribution, a number of random systems/agents will be added to its

neighborhood pool such that the total number of neighbors d̂u ≫ du, e.g., d̂u = 1, 000

given du = 30. Then, the agent in question (u) queries each of the d̂u neighbors (v)
to determine their topical distance ruv. Finally, the following connection probability
function is used by system u to decide who should remain as neighbors (to build the
interconnectivity overlay):

puv ∝ r−α
uv (6)

where α is the clustering exponent and ruv the pairwise topical (search) distance. The
finalized neighborhood size will be the expected number of neighbors, i.e., du. With a
positive α value, the larger the topical distance, the less likely two systems/agents will
connect. As illustrated in Figure 4, large α values lead to highly clustered networks
while small values produce random networks with many topically remote connections
or weak ties.

8. EXPERIMENTAL DESIGN

8.1. Data Collection

We rely on the ClueWeb09 Category B collection created by the Language Technologies
Institute at Carnegie Mellon University for IR experiments. The ClueWeb09 collection
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contains roughly 1 billion web pages and 8 billion outlinks crawled during January
- February 2009. The Category B is a smaller subset containing the first crawl of 50
million English pages from 3 million sites with 454 million outlinks. The ClueWeb09
dataset has been adopted by several TREC tracks including Web track and Million
Query track [Clarke et al. 2009a]. Additional details about the ClueWeb09 collection
can be found at http://boston.lti.cs.cmu.edu/Data/clueweb09/.

A hyperlink graph is provided for the entire collection and the Category B subset.
In the Category B subset, there are 428,136,613 nodes and 454,075,604 edges (hyper-
links). Nodes include the first crawl of 50 million pages and additional pages that were
linked to. Only 18,607,029 nodes are the sources (starting pages) of the edges (average
24 outlinks per node) whereas 409,529,584 nodes do not have outgoing links captured
in the subset. Analysis of the Category B hyperlink graph produces Figures 6 (a) in-
degree frequency distribution and (b) out-degree distribution (on log/log coordinates).
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Fig. 6. ClueWeb09 Category B: Statistical Distributions. X denotes each variable: (a) in-degree, (b) out-
degree, (c) site size, and (d) page size. Y represents the frequency (# occurrences) of the X value.

Based on 50, 221, 776 pages extracted from 2, 777, 321 unique domains (treated as
sites) in the Category B subset, we have also analyzed # pages per web site distri-
butions. The mean number of pages per site is 18. The distribution of the number of
pages per site is shown on log/log coordinates in Figure 6 (c). Figure 6 (d) shows page
size (text length) frequency distribution on log/log coordinates. There are a couple of
visible high points on the graph – that is, many web pages have a content length of
roughly 12 KB, 17 KB, or 65 KB. The mean size is 1, 109 KB while the median is 622
KB.

8.2. Network Model

Each agent represents an IR system serving a collection of pages/documents. We as-
sume that there is no global information about all document collections. Nor is there
centralized control over individual agents. Agents have to represent themselves us-
ing local information they have and evaluate relevance based on that. Using the
ClueWeb09 collection, we treat a web site as an agent and use hyperlinks between
sites to construct the initial network. Network clustering will then be performed using
the method described in Section 7.3.

8.3. Task Levels

Given the size of the web (and likewise the ClueWeb09 collection), it is nearly im-
possible to manually judge the relevance of every document and establish a complete
relevance base. Hence, we primarily rely on existing evidence in data to do automatic
relevance judgment. We use documents (with title and content/abstract) as queries to
simulate decentralized search on three task levels, each of which involves some arbi-
trary mechanism to determine whether a document is relevant to a query. In addition,
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we use TREC’09 web track ad hoc topics and relevance judgments for experiments on
short web queries. We elaborate on the four levels below.

8.3.1. Task Level 1: Threshold-based Relevance Search. The first level involves finding doc-
uments with relevant information. Relevant documents are considered few, if not rare,
given a particular information need. For evaluation purposes, we will first perform cen-
tralized IR operations on the entire collection and treat top-ranked documents (e.g., top
100 of 50 million) as the relevant set, which will then be used in decentralized IR exper-
iments for relevance judgment. The approach is potentially biased by the centralized
IR system employed and is therefore not entirely objective. However, this will establish
an evaluation baseline and provide basic ideas about how well search methods work.
This approach has been used commonly in research such as [Bawa et al. 2003; Lu and
Callan 2006].

8.3.2. Task Level 2: Co-citation-based Authority Search. The second task level involves find-
ing agents that are best “regarded” as relevant to a query (i.e., a web page). On this
level, we define relevant documents as those that are frequently cited together (linked
to) with the given query document. On the web, citation-based (link-based) techniques
have been shown to effectively identify authority evidence [Page et al. 1998; Kleinberg
et al. 1999]. More importantly, research showed co-citation techniques are very accu-
rate at discovering similar, important (web) documents [Dean and Henzinger 1999].
This task level, relying on co-citation patterns as relevance/authority judgment, is po-
tentially more objective and more challenging than the first level. It can also be seen as
popular5 item search because a web document receives many in-links (and co-citations)
only when it has achieved some popularity level.

8.3.3. Task Level 3: Rare Known-Item Search (Exact Match). The third task level, presum-
ably most challenging, is to find the source of a given document (query). Specifically,
when a query document is assigned to an agent, the task involves finding the site or
author who created it and therefore hosts it. In other words, in order to satisfy a query,
an agent must have the exact document in its local collection. The strength of this task
is that relevance judgment is well established provided the relative objectiveness and
unambiguity of creatorship or a “hosting” relationship. Among the 50 million pages in
the ClueWeb09 collection, for example, there are likely only a few copies of a document
being searched for. The extreme rarity will pose a great challenge on the proposed
decentralized search methods.

8.3.4. Task Level 4: TREC’09 Web Track Ad Hoc Topics. Lastly, we use ad hoc topics and
relevance judgments from TREC’09 web track for experiments on web searches with
short queries. The collection provides 50 topics and 13, 118 relevance judgment records
for submissions based on ClueWeb09B [Clarke et al. 2009b]. We use free-text terms
without detailed descriptions for query representation and anchor texts (extracted
from links pointing to 8, 307, 747 pages in ClueWeb09B) for document representation.
Web sites (domains) with at least one document being judged relevant or non-relevant
are included in the distributed network, resulting in 1, 916 sites/agents with 635, 332
pages. Although the size of the network is not very large (e.g., compared to the 100, 000-
system experiments we conduct in this research), this task level provides another well
justifiable baseline in the web search context.

5Popularity here is in terms of the frequency of an item being cited, rather than the number of copies that
have been duplicated, e.g., in peer-to-peer networks.
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8.4. Additional Independent Variables

8.4.1. Degree Distribution: dmin and dmax. We will use the degree (in-degree) distribution
of the ClueWeb09B hyperlink graph and normalize the distribution to fall in a range
[dmin, dmax]. With different dmin and dmax values, the degree distribution will continue
to follow a pattern similar to Figure 6 but is with a different degree distribution expo-
nent γ because the slope on log-log changes. We use various degree ranges, e.g., [30, 30],
[30, 60], and [30, 120], to examine the impact of degree distribution on decentralized
searches. With the range [30, 30], all agents/systems share one common degree, i.e., 30.

8.4.2. Network Clustering: Clustering Exponent α. Based on a degree du picked from a dis-
tribution, the clustering exponent α controls the probability of topically relevant or
irrelevant agents connecting to each other (see Section 7.3 for details). One central
question in this study is about the impact of α ∈ [0,∞) on search performance. As
shown in Figures 3 and 4, when α = 0, the network becomes a random network as
interconnectivity is independent of topical relevance. When α → ∞, the network is
extremely clustered, in which agents only connect to very close (topically relevant or
similar) neighbors. To establish a reasonable range of α, we replicated experimental
simulations of Kleinberg [2000] on various network size scales and conducted pilot ex-
periments in the IR context as well. We identified α ∈ [0, 1, 2, 3, 4, 5] as a good range for
experiments in this study.

8.4.3. Maximum Search Path Length Lmax. Provided the importance of achieving overall
network utility and scalability of search, we propose the use of a parameter, namely,
the maximum search path length Lmax, which defines the longest path each search
allowed for query traversal. If a search reaches the maximum value, even when the
query has not been answered, the task will be terminated and returned to its origina-
tor.

8.5. Evaluation: Dependent Variables

Given diverse users in an open, dynamic environment, some queries are likely to be
narrowly defined. The study focuses on how relevant information can be found and
scalability of decentralized searches. We emphasize the finding of highly relevant in-
formation in large distributed environments and propose the use of the following eval-
uation measures.

8.5.1. Effectiveness: Classic IR Metrics. We use traditional IR effectiveness metrics such
as precision, recall, F, and discounted cumulative gain (DCG) for effectiveness eval-
uation. Of various evaluation metrics used in TREC and IR, precision and recall
are the basic forms. Whereas precision P measures the fraction of retrieved docu-
ments being relevant, recall R evaluates the fraction of relevant documents being
retrieved. The harmonic mean of precision and recall, known as F1, is computed by
F1 = 2 · P · R/(P + R). These measures will be used to evaluating results from exact
match searches. For each query, recall is 1 when an exact match is found; recall is 0 if
otherwise.

For ranked retrieval results, Jarvelin and Kekalainen [2002] proposed several cumu-
lative gain metrics. Specifically, given a ranked list of retrieval results, the discounted
cumulative gain at a rank position p is defined as:

DCGp = rel1 +

p∑

i=2

reli
log2 i

(7)

where reli is the relevance value of the item at position i. Because search results
(and rank list length) vary on queries, a normalized DCG function was also proposed
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for values to be compared and aggregated across multiple queries. Given an ideal DCG
at position p (DCG achieved based on sorted relevance) iDCG, the normalized DCG is
computed by:

nDCGp =
DCGp

iDCGp

(8)

Normalized discounted cumulative gain at position 10 (nDCG10) will be used in rele-
vance search and authority search experiments, where a federated ranked list of docu-
ments gets retrieved for each query. We use nDCG3 for TREC’09 Web track evaluation
given limited relevance judgments and the focus on very top results in web searches.

8.5.2. Efficiency. For efficiency, the maximum search path length Lmax (or the max
number of hops allowed) will be controlled in each experiment whereas the actual
search path length will be recorded. The average search length of all tasks can there-

fore be calculated to measure efficiency: L̄ =
∑Nq

i=1 Li/Nq, where Li is the search path
length of the ith query and Nq the total number of queries. With shorter path lengths,
the entire distributed system is considered more efficient given fewer agents involved
in searches.

8.5.3. Scalability Analysis. One important objective of this research is to understand
how decentralized IR systems can function and scale in large, heterogeneous, and dy-
namic network environments. Findings are useless if they are only based on small net-
work sizes. For scalability, we will run experiments on different network size scales.
Effectiveness vs. efficiency patterns will be compared to discover how search meth-
ods work on the size scales. Best results in terms of efficiency and effectiveness will
also be compared and plotted against network size. Their functional relationships with
network size will be analyzed.

8.6. Parameter Settings

Table I summarizes some of the major independent variables discussed above and
presents combinations of parameters to be tested in the proposed experiments. Under
each experimental setting, each of four proposed search methods will be employed to
conduct searches. Effectiveness and efficiency results will be recorded automatically
for later analysis. Parameter values in the table have been chosen based on pilot ex-
periments conducted earlier.

Table I. Major Experimental Settings. Symbols: N denotes network size, i.e., the number of distributed
system in the network; Lmax denotes maximum search path length allowed in each experiment; α
is clustering exponent. Main experiments will be focused on Exact Match searches in networks of a
degree range d ∈ [30, 60].

N (Lmax) Task Level α Degree Range Search Method

102 (20) Relevance Search 0 [30, 30] Random Walk (RW)
1

103 (100) 2 Similarity (SIM) Search
Authority Search 3 [30,60]

104 (500) 4 Degree (DEG) Search
5

105 (2500) Exact Match .. [30, 120] Similarity+Degree (SimDeg)

1, 916 (100) TREC’09 Web 0-5 [4, 8] SIM, DEG, SimDeg, PGS, SimPGS
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8.7. Simulation Procedures

Experiments are conducted on a Linux cluster of 5 PC nodes, each has Dual Intel Xeon
E5620 (2.4 Ghz) Quad Core Processors (8 processors), 24 GB fully buffered system
memory, and an REHL 6 installation. The nodes are connected internally through a
dedicated 1Gb network switch. The agents (distributed IR systems) are equally dis-
tributed among the 40 processors, each of which loads an agent container in Java,
reserves 2GB memory, and communicates to each other. The Java Runtime Environ-
ment version for this study is OpenJDK 1.6.0 22. We provide the pseudo code about
the experimental procedures in Algorithm 1. For relevance and authority searches, a
threshold of document matching score 1.0 based on Equation 3 is used to determine
whether a potentially relevant system has been reached. The score is normalized by
document length and query terms, and can be higher than 1.0.

ALGORITHM 1: Simulation Experiments

1: for each Network Size N ∈ [102, 103, 104, 105] do
2: for each Task Level ∈ [Relevant,Authority,ExactMatch] do
3: for each Clustering Exponent α ∈ [0, 1, 2, 3, 4, 5] do
4: rewire the network using α
5: for each Search Method ∈ [SIM,SimDeg,DEG,RW ] do
6: for each Query do
7: repeat
8: forward a query from one agent/system to another
9: until relevant found OR search path length L ≥ Lmax

10: if relevant found, i.e., similarity scores surpass a threshold then
11: if task is Relevant Search OR Authority Search then
12: query additional neighbors for more relevant documents
13: else if task is Exact Match Search then
14: retrieve the most similar/relevant document
15: end if
16: send the results back to the first agent/system
17: merge and rank all retrieved documents
18: else
19: send message back about failure
20: end if
21: end for
22: measure search effectiveness: precision, recall, F1, nDCG10

23: measure search efficiency: search path length L and search time τ
24: end for
25: end for
26: end for
27: end for

9. EXPERIMENTAL RESULTS

In the presentation of experimental results, we first discuss rare known-item (exact
match) searches in Section 9.1. We report on detailed results in Section 9.1 and analyze
the clustering paradox in Section 9.2. We evaluate scalability of searches in Section 9.3
and scalability of network clustering in Section 9.4. Section 9.5 presents results on
search performances when degree distribution varies. Section 9.6 discusses additional
results from relevance search and Section 9.7 on authority search .
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9.1. Rare Known-Item (Exact Match) Search

For main experiments, we identified 85 documents (web pages with title and content)
from 100 most highly connected (popular) web domains (systems) by random sampling
and manual selection6. These 85 web documents were used as queries in most of our
decentralized search experiments. Main experiments were focused on finding exact
match documents (rare known items) because this task level, challenging in a dis-
tributed environment, can be objectively evaluated.

We sorted all Web domains in the ClueWeb09B collection by connectivity/popularity
and started with the 100 most highly connected web domains for experiments on the
100-system network. Then we extended the network to include more systems on the
sorted list for larger network sizes N ∈ [102, 103, 104, 105]. We set the max search path
length Lmax to [20, 100, 500, 2500] for the different network sizes respectively. Table II
shows the number of web documents in each network thus constructed.

Table II. Network Sizes and Total Numbers of Docs

Task Exact Match/Relevance/Authority TREC Web
Network Size N 100 1, 000 10, 000 100, 000 1, 916
Number of Docs ND 0.5 million 1.7 million 4.4 million 10.5 million 0.6 million

With each network size, we varied the clustering exponent α for network construc-
tion and tested each of the four proposed search methods, namely, Random Walk
(RW), Similarity Search (SIM), Degree Search (DEG), and Similarity*Degree Search
(SimDeg). To determine the number of links (degree) each system should have, we uti-
lized the Web graph of the ClueWeb09B collection and normalized the degree distribu-
tion to the range of [30, 60]7. In all experiments, no document identification information
was used for indexing or searching. This section presents main experimental results
on rare known-item (exact-match) searches.

0 1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

Clustering Exponent (ALPHA)

F
1

Network Size: 100
Similarity Search
Similarity*Degree                    
Degree Search
Random Walk   

0 1 2 3 4 5

6
8

10
12

14
16

18

Clustering Exponent (ALPHA)

S
ea

rc
h 

P
at

h 
Le

ng
th

 (
#h

op
s)

Network Size: 100
Similarity Search
Similarity*Degree                    
Degree Search
Random Walk   

(a) Effectiveness: F1 = Recall (c) Efficiency: Search Length

Fig. 7. Effectiveness and Efficiency on 100-System Network

9.1.1. 100- and 1000-System Networks. In all rare known-item searches, precision was
maintained at 1.0 because a document was retrieved only when it exactly matched

6We manually removed from queries web documents with either very little or very common text content,
e.g., a web site’s terms of use page.
7The majority had a degree of 30 while very few had 60 connections. Degree ranges [30, 30] and [30, 120]
were used in additional experiments.
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a query document. In 100-system networks (shown in Figures 7), similarity search
(SIM) and similarity*degree (SimDeg) methods performed very well in terms of effec-
tiveness and efficiency, showing a very large advantage in F1 (and recall) over degree
(DEG) search and random-walk (RW) methods. For example, in the 100-system net-
work, SIM and SimDeg searches achieved above 0.9 F1 at a network clustering level
(α = 3) while DEG and RW searches only had F1 values around 0.2. Whereas SIM and
SimDeg methods only involved 5 systems (5%) and took less than 150 milliseconds to
reach F1 0.9 at α = 3, RW and DEG searches traversed 17 − 18 systems (and more
than 400 milliseconds) for a roughly 0.2 F1. The differences are large and statistically
significant8.
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Fig. 8. Performance on 1,000-System Network

In 1, 000-system networks (Figure 8), SIM and SimDeg search methods continued
to show large advantages on search performance. SIM search achieved its best per-
formance higher than 0.9 F1 by only traversing less than 30 systems (or 3%) in the
network. The RW method, as a baseline, involved roughly 90 systems to reach 0.2 F1.
In 100- and 1000-system networks, the impact of network clustering (guided by α) on
search performance is not clearly shown. As discussed in Section 4.2, among others,
network structure is increasingly relevant in larger networks, where it becomes im-
portant to find a balance between strong ties for search guidance and weak ties for
“jumps.” In the following sections, we will discuss results and plots from experiments
on the 10, 000- and 100, 000-system networks, and present initial evidence, which ap-
pears to support the Clustering Paradox.

9.1.2. 10,000-System Network. When the network was extended to 10, 000 systems, some
interesting patterns on search performances began to emerge. As shown in Figure 9 (a)
and (b), while SIM and SimDeg searches continued to dominate search performance
both in effectiveness (F1) and efficiency (search path length), some network cluster-
ing levels appeared to produce better results than others. For example, SIM search
achieved best effectiveness (highest F1 score) and efficiency (smallest search path
length) at α = 2. Reducing α (weaker clustering) or increasing α (stronger clustering)
led to degraded performances. The plots provide visual evidence about the Clustering

8In this article, reported differences are statistically significant based on (generalized) linear regression
unless stated otherwise.
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Fig. 9. Performance on 10,000-System Networks

Paradox in IR, in which neither under- nor over-clustering is desirable. Section 9.2
presents an in-depth statistical analysis of this phenomenon.

DEG search performances over clustering levels α ∈ [0, 1, .., 5] follow a very different
pattern. Interestingly, DEG search achieved its best performance at α = 0, i.e., with no
clustering in a random network. The best result of DEG search result surpassed the
performance of SimDeg search but was outperformed by SIM search (at α = 2) in terms
of efficiency. The SimDeg method, which combines similarity and degree information,
appears to have mixed the performances of SIM and DEG methods in Figure 9 (a) and
(b).

It is important to point out that strong performances of DEG and SimDeg methods
were due, in part, to the particular “popular” queries used in the experiments. As de-
scribed early, the queries were pages identified from most highly connected (linked-to)
domains in the ClueWeb09B collection. In the 100-system network, DEG performed
poorly because most of the systems were highly connected domains and it is difficult
to differentiate one from another based on degree values. DEG-related methods per-
formed better in larger network because of the degree-based discriminative power is
useful in directing queries to popular targets. We shall see in section 9.8 that the pat-
terns of DEG and SimDeg performances were not replicated in TREC’09 web track
tasks.

9.1.3. 100,000-System Network. Because SIM search produced superior results in the
[102, 103, 104]-system networks, we concentrated on SIM searches for experiments on
the largest network in the study, i.e., the network of 100, 000 systems. Another reason
for not conducting experiments on the other search methods was because of time con-
straints – other methods such as RW were much less efficient and would have taken a
very long time to finish with the large network size 105.

A similar pattern on SIM search performance continued to appear in the 100, 000-
system network, where more than 10 million documents were served in a distributed
manner. As shown in Figures 10 (a) and (b), SIM search continued to achieve its best
effectiveness and efficiency at α = 2. Smaller α (weaker clustering) or larger α val-
ues (stronger clustering) led to performance degradation. The inflection at α = 2 looks
much sharper in the 100, 000-system network than in the 10, 000-system network, sug-
gesting a potentially stronger impact of network clustering on search performance. We
conducted further analysis and relied on statistical tests to better understand the im-
pact of connectivity, to predict the scalability of search, and to answer related research
questions. We discuss these tests and findings in the following Sections 9.2 and 9.3.
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Fig. 10. Performance on 100,000-System Network. Line is the average of individual data points at each α
level.

9.2. Clustering Paradox

Given that the Similarity (SIM) search method was shown to perform much better
than the other methods, we focus on SIM search in the discussion about the impact of
network clustering on search performance.
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Fig. 11. Performance on All Network Sizes

Figure 11 shows SIM search performances over network clustering levels α ∈
[0, 1, 2, 3, 4, 5] for network sizes N ∈ [102, 103, 104, 105] in terms of (a) effectiveness and
(b) efficiency. Both sub-figures demonstrate that network structure (clustering) had an
important impact on decentralized information retrieval performance, particularly in
larger networks. Some level of network clustering (i.e., α = 2 in the experiments) sup-
ported best search performance. Effectiveness and efficiency degraded when there was
stronger or weaker clustering.

While search efficiency (search path length) under different clustering conditions
only differed slightly or moderately in the 100-, 1, 000-, and 10, 000-system networks,
the difference was more dramatic in the network of 100, 000 systems (Figure 11 (b)).
For example, when α increased from 2 → 3 in the 10, 000-system network, search path
length increased from about 190 to 220, roughly a 30 hops (or 15%) increase. The same
degree of network clustering change, however, resulted in a much larger increase of
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search path length roughly from 1000 to 1550, by 550 hops (or 55%) in the 100, 000-
system network.

Statistical tests indicated that SIM search achieved significantly better results with
the balanced level of network clustering (i.e., at α = 2) than with over- or under-
clustering. Significant differences appeared in both the 10, 000-system and 100, 000-
system networks. Results from the statistical analysis are shown in Tables III, IV
(10, 000-system network) and Tables V, VI (100, 000-system network). We elaborate on
the results below9.

Table III. SIM Search: Network Clustering on Effectiveness in Network 10,000

Comparison Difference in F1 Error t value Pr(> |t|) R2

α : 0 → 1 0.08471 0.01299 6.519 0.00018 *** 0.842
α : 1 → 2 0.03294 0.01065 3.092 0.015 * 0.544
α : 2 → 3 -0.1129 0.009843 -11.47 0.000003 *** 0.943
α : 3 → 4 -0.09882 0.006444 -15.34 0.00000032 *** 0.967
α : 4 → 5 -0.09176 0.01299 -7.062 0.00011 *** 0.862

Table III compares SIM search effectiveness scores (F1) between every two consec-
utive levels of clustering (α) on the 10, 000-system network. It shows that when clus-
tering exponent α increased from 0 → 1 → 2, i.e., from random/no clustering to some
level of clustering, search effectiveness improved. When α continued to increase from
2 → 3 → 4 → 5, search effectiveness degraded.

Table IV. SIM Search: Network Clustering on Efficiency in Network 10,000

Comparison Difference in Search Length Error t value Pr(> |t|) R2

α : 0 → 1 -33.39 5.177 -6.45 0.0002 *** 0.839
α : 1 → 2 -14.1 4.422 -3.188 0.013 * 0.56
α : 2 → 3 27.28 3.27 8.341 0.000032 *** 0.897
α : 3 → 4 40.09 4.195 9.557 0.000012 *** 0.919
α : 4 → 5 49.34 3.972 12.42 0.0000016 *** 0.951

Similar patterns also appear in Table IV on SIM search efficiency in the 10, 000-
system network. When α increased from 0 → 5, the general trend was that search
performance first improved (to smaller search path lengths) and then degraded (to
longer search path lengths). The inflection point appeared at α = 2, where SIM search
performed at its best.

Table V. SIM Search: Network Clustering on Effectiveness in Network 100,000

Comparison Difference in F1 Error t value Pr(> |t|) R2

α : 0 → 1 0.1098 0.02531 4.338 0.023 * 0.862
α : 1 → 2 0.1059 0.01617 6.548 0.0028 ** 0.915
α : 2 → 3 -0.2451 0.01103 -22.21 0.0002 *** 0.994
α : 3 → 4 -0.1294 0.02999 -4.315 0.05 * 0.903
α : 4 → 5 -0.04706 0.0506 -0.93 0.45 0.302

Table V shows consistent results on the 100, 000-system network, in which best
search effectiveness and efficiency were also found at α = 2. As compared to the 10, 000-
system network, the impact of network clustering of 100, 000 systems on search perfor-
mance appeared to be stronger. For example, in the 104 network, changing α from
1 → 2 resulted in an F1 increase of 0.03 and 14 hops shorter in search path length.

9Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1, based on linear regression.
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The same degree of network clustering change led to a 0.11 increase in F1 and a search
path shortened by 268 in the 105-system network.

Table VI. SIM Search: Network Clustering on Efficiency in Network 100,000

Comparison Difference in Search Length Error t value Pr(> |t|) R2

α : 0 → 1 -170.1 21.8 -7.801 0.0044 ** 0.953
α : 1 → 2 -267.9 20.11 -13.33 0.00018 *** 0.978
α : 2 → 3 545.1 24.08 22.64 0.00019 *** 0.994
α : 3 → 4 232.3 49.13 4.729 0.042 * 0.918
α : 4 → 5 141.3 69.37 2.037 0.18 0.675

Overclustering also had a stronger impact in the 105 network than in the 104 net-
work. When α increased from 2 → 3 in the 104 network, F1 had a 0.11 loss while search
path length increased by 27. The same degree of change in the 105 network resulted in
much more dramatic performance loss – a 0.25 loss in F1 and a 545 increase in search
path length.

These tests support our first hypothesis about the Clustering Paradox, that there
does exist a level of network clustering (α = 2 in our experiments), below and above
which search perform degrades. In other words, that specific level of clustering sup-
ports best search performance in terms of both effectiveness and efficiency.

One additional important finding is that the clustering paradox appears to have a
scaling effect on search performances. The negative impact of under- or over-clustering
on search effectiveness and efficiency is much greater in larger networks. Small perfor-
mance degradation in a small network may lead to a much greater disadvantage when
the network grows in magnitude. This scaling effect requires closer examination.

9.3. Scalability of Search

For each network size, we identified network clustering conditions under which supe-
rior performance was observed (i.e., at α = 2 in the experiments). We plotted recall and
precision vs. network size at α = 2 in Figure 12. As discussed earlier, SIM and SimDeg
searches consistently achieved very high recall and precision across the various net-
work sizes, much better than DEG and RW methods. DEG search tended to perform
better in larger networks than in smaller ones given the popular nature of queries we
used.
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Fig. 12. Scalability of Search Effectiveness at α = 2
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Figure 13 (a) shows average search path length (efficiency) vs. network size at α = 2.
Search path length for RW and DEG increased dramatically in larger networks while
the increases for SIM and SimDeg were relatively moderate. SIM and SimDeg methods
appeared to be much more scalable than RW and DEG methods.
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Fig. 13. Scalability of Search Efficiency at α = 2. X (network size) is log-transformed.

Previous research on complex networks suggested that optimal network cluster-
ing supports scalable searches, in which search time is a poly-logarithmic function
of network size. We relied on a generalized regression model that modeled search path
length L (and search time τ ) against log-transformed network size N . The model was
specified to reach the origin (0, 0) because, when log(N) = 0 (i.e., N = 1), there is
only one node/system in the network and no effort is needed to search further. The
best fit for search path length L was produced by the model in Table VII, in which
L = 0.0125 · (log10 N)7 has a nearly perfect R2 = 0.999.

Table VII. SIM Search: Search Path length vs. Network size

Search Path Length: L ∼ 0 + β(log10 N)7, where N is network size.

Coefficient Estimate Standard Error t value Pr(> |t|)
β 0.0125 7.04e− 05 177 5e− 52 ***
R2 = 0.999 (adj. 0.999), F = 31457 on 1 and 34 DF

Figure 13 (b) shows actual data points on search path length L vs. network size
N , together with values (dotted line) predicted by the regression model L = 0.0125 ·
(log10 N)7. Overall, the scalability analysis supports search time as a poly-logarithmic
function of network size (hypothesis 2) – so that when an information network contin-
ues to grow in magnitude, it is still promising to conduct effective search operations
within a manageable time limit. This poly-logarithmic scalability was supported by a
particular network clustering level, i.e., α = 2 in the experiments. Although we found
the order of the poly-logarithmic relationship to be roughly 7 in this study, a smaller
exponent can be expected when other factors on network structure and search methods
can be optimized.
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9.4. Scalability of Network Clustering

It is important to understand how much effort is needed to construct and maintain
a network structure for effective and efficient search functions. Our search methods
relied on local indexes and a network structure self-organized by distributed systems
in the network. Without global information or centralized control, network clustering
was performed locally – distributed systems formed a network based on their limited
opportunities to interact, individual preferences, and budgets.

This local mechanism for clustering demonstrated a high level of scalability. In our
experiments, average clustering time τc remained relatively constant, < 1 sec, across
all network size scales N ∈ [102, 103, 104, 105] (see also Ke and Mostafa [2010]). This
constant time characteristic was due to the fact that clustering was performed locally
and simultaneously. Each system relied on its own computing resources and estab-
lished its connectivity independently. The number of neighbors one had to communi-
cate to in the clustering process was also a constant across the different network sizes.

This highly scalable, local clustering mechanism is particularly useful for coping
with dynamics and heterogeneity in the distributed environment. Even when changes
occur in the network (e.g., with system arrival/departure and/or new content), the clus-
tering mechanism does not require the entire community to respond to the changes.
Instead, only neighbor systems directly connected to changed nodes will need to receive
updates. Yet as shown by experimental results, this very local mechanism supports ef-
fective and efficient discovery of relevant information in the global space.

9.5. Impact of Degree Distribution

The main experiments discussed in earlier sections were conducted on a degree (du,
number of neighbors/connections per system) distribution normalized to du ∈ [30, .., 60].
For example, in experiments on the 10, 000-system network, we obtained the number
of incoming hyperlinks each of the 104 systems (web sites) received from the entire
ClueWeb09B collection and established the original degree distribution. We normal-
ized all degrees to fit in the range of [30, 60] using Equation 5 described in Section 7.3.
These degrees were then used in experiments to determine how many neighbors a
system was supposed to have for network construction and clustering.

0 1 2 3 4 5

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Clustering Exponent (alpha)

F
1

Network Size: 
Degrees in [30,120]                          
Degrees in [30,60]
Degrees in [30,30]

0 1 2 3 4 5

20
0

25
0

30
0

Clustering Exponent (alpha)

S
ea

rc
h 

P
at

h 
Le

ng
th

 (
#h

op
s)

Network Size: 
Degrees in [30,120]                          
Degrees in [30,60]
Degrees in [30,30]

(a) Effectiveness: F1 (b) Efficiency: Search Path Length

Fig. 14. SIM Search Performance with Varied Degree Ranges

We varied the range of degrees and studied the impact of degree distribution on
search performance. In addition to range [30, 60], we also used [30, 30] and [30, 120] for
experiments on the network of 10, 000 systems. With range [30, 30], all systems had a
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uniform degree, i.e., 30. With range [30, 120], degree values spread over larger values
as compared to those ∈ [30, 60].

Experimental results with different degree ranges [30, 30] and [30, 120], in addition to
main experiments on range [30, 60], are shown in Figures 14 (a) and (b). Overall, best
performances on the three different degree distributions [30, 30], [30, 60], and [30, 120]
all appeared around α = 2. Statistical tests on the degree ranges produced consis-
tent results on the impact of network clustering. While search performance changes
when degree distribution varies10, evidence continues to support the existence of the
Clustering Paradox.

9.6. Relevance Search

At the task level of Relevance Search, the goal was not (only) to find exact matches but
to find documents that were relevant (similar) to each query. Because the ClueWeb09B
was a very new, large web collection, there was not a complete human judged rele-
vance base for evaluation. To establish a relevance base automatically, we followed
the following arbitrary mechanism, which has been widely used by IR researchers for
evaluation of large scale distributed system performance [Bawa et al. 2003; Lu 2007b].

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Clustering Exponent (ALPHA)

nD
C

G

Network Size: 10000
Similarity Search
Similarity*Degree                    
Degree Search
Random Walk   

0 1 2 3 4 5

25
0

30
0

35
0

40
0

45
0

Clustering Exponent (ALPHA)

S
ea

rc
h 

P
at

h 
Le

ng
th

 (
#h

op
s)

Network Size: 10000
Similarity Search
Similarity*Degree                    
Degree Search
Random Walk   

(a) Effectiveness: nDCG at 10 (b) Efficiency: Search Path Length

Fig. 15. Relevance Search Performance on 1,000-System Network

First we built a centralized IR system using the core search engine function of our
distributed systems and indexed 4.4 million documents that appeared in the 10, 000-
system network. Then, we issued each query to the centralized IR system and re-
trieved top 100 documents. We treated the 100 documents as the only relevant docu-
ments among all 4.4 million pages for each query and used similarity scores produced
by the centralized system as their relevance to the query. Finally, queries were issued
to the 10, 000-system network to obtain a federated rank list of 10 documents. The
results were compared to the gold standard produced by the centralized system and
were evaluated using normalized discounted cumulative gain (nDCG) at position 10
(see Section 8.5).

Figure 15 shows experimental data from relevance searches in the 10, 000-system
network. Results are consistent with those from exact match searches. While RW
search continued to be a lower-bound baseline, SIM search performed relatively well,
with its best performance at α = 2. DEG search achieved superior search performances

10The inflection point with degree range [30, 30] appeared to be slightly below 2.
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with random/no clustering, i.e., at α = 0, and degraded when there was stronger clus-
tering.

Table VIII. SIM Search: Network Clustering on Relevance Search Effectiveness

Comparison Difference in nDCG10 Error t value Pr(> |t|) R2

α : 0 → 1 0.06469 0.02042 3.168 0.019 * 0.626
α : 1 → 2 0.03113 0.01309 2.379 0.041 * 0.386
α : 2 → 3 -0.06141 0.01218 -5.04 0.0007 *** 0.738
α : 3 → 4 -0.1069 0.00716 -14.93 0.0000057 *** 0.974
α : 4 → 5 -0.04658 0.01358 -3.429 0.014 * 0.662

Table IX. SIM Search: Network Clustering on Relevance Search Efficiency

Comparison Difference in Search Length Error t value Pr(> |t|) R2

α : 0 → 1 -35.9 3.239 -11.08 0.000032 *** 0.953
α : 1 → 2 -7.863 2.712 -2.9 0.018 * 0.483
α : 2 → 3 21.44 4.654 4.608 0.0013 ** 0.702
α : 3 → 4 25.79 7.07 3.648 0.011 * 0.689
α : 4 → 5 40.41 7.287 5.546 0.0015 ** 0.837

We analyzed SIM search performances over different values of α ∈ [0, 1, 2, 3, 4, 5]. Ta-
ble VIII compares SIM search effectiveness scores (nDCG10) between every two con-
secutive levels of clustering (α) on the 10, 000-system network. It shows that when
clustering exponent α increased from 0 → 1 → 2, i.e., from random/no clustering to
some level of clustering, search effectiveness improved. When α continued to increase
from 2 → 3 → 4 → 5, search effectiveness degraded. This trend resembles how F1

changed over α values in exact match searches (compare to Table III).
Similar patterns also appear in Table IX on SIM search efficiency in the 10, 000-

system network. When α increased from 0 → 5, the general trend was that search
performance first improved (to smaller search path lengths) and then degraded (to
longer search path lengths). The inflection point appeared at α = 2, where SIM search
performed at its best (compare to Table IV). This provides further evidence that the
Clustering Paradox mattered in the relevance searches (hypothesis 1).

9.7. Authority Search

Experiments on authority searches were conducted in a manner nearly identical to rel-
evance searches, except for how results were evaluated. In relevance searches, decen-
tralized search results from a network were compared to a gold standard produced by a
centralized search system. In authority searches, we relied on co-citation information
from the ClueWeb09B web graph to establish a gold standard on relevant authority
pages.

For each of the 85 query documents used in exact match and relevance search tasks,
we identified pages among the 4.4 million in the 10, 000-system network that were co-
cited (being linked together) for at least 5 times. The number of citations of each page
with the query was then normalized by the total number of citations (in-links) the page
received to produce an authority score. We selected 100 web documents/pages with the
highest authority scores as the relevance base (gold standard) for each query. Only
38 queries remained because the other queries did not have sufficient co-cited pages.
Results from distributed searches in the 10, 000-system network were then compared to
the gold standard. We continued to use normalized discounted cumulative gain (nDCG)
at 10 to evaluate retrieval effectiveness.

Figure 16 presents results from authority search experiments on the 10, 000-system
network. As shown in Figure 16 (a), search effectiveness was low in general – SIM,
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Fig. 16. Authority Search Performance on 10,000-System Network

SimDeg, and DEG searches only achieved nDCG10 scores slightly higher than 0.1.
RW search effectiveness was well below nDCG 0.02. The major reason for the low
nDCG scores was because the retrieval fusion (federation) method used in distributed
searches only relied on topical similarity scores for ranking retrieved documents. The
authority gold standard might have disregarded many content-wise similar pages if
they did not have enough co-citations. Nonetheless, this task level provides additional
evidence on how system connectivity affects search performance.

In Figures 16 (a) and (b), SIM search effectiveness and efficiency results look consis-
tent with those from relevance searches. For SIM searches, α = 1 seemed to support its
best performance. Increasing or decreasing α value from 1 degraded both effectiveness
and efficiency.

Statistical analysis showed that search performance improved when α increased
from 0 → 1 and degraded when α changed from 2 → 3 → 4 → 5. We found no significant
difference between performances at α = 1 and at α = 2. It is likely that the inflection
point is at an α value between 1 and 2. Regardless of the actual network clustering level
for best authority search performance, analysis here further supports the existence of
clustering paradox in the IR context.

9.8. TREC’09 Web Track

As discussed, ad hoc search queries from TREC’09 Web track were performed in a 1916-
system network based on anchor text document representation. Each query was forced
to traverse 100 hops (search path length) before best results were identified using the
result fusion method described in section 7.1.4. We limited each agent’s connectivity to
a small number of neighbors (d ∈ [4, 8] neighbors), chosen from the entire community
of 1915 (i.e. 1916− 1) systems.

We use nDCG at position 3 for effectiveness evaluation because of limited num-
bers of relevant records in the judgments and the emphasis on top results in web
retrieval. Figure 17 shows efficiency and effectiveness results. In Figure 17 (b), search
path length (efficiency) is always 100 because this was the number of hops each query
was set to traverse in the web track task. Figure 17 (a) shows retrieval effectiveness
in terms of nDCG3 over various clustering levels α ∈ [0, 5].

Degree-based DEG search and collection-size-based PGS search achieved roughly
the same level of effectiveness at different network clustering levels. This flat pattern
of DEG search is very different from what we observed earlier in exact match (sec-
tion 9.1), relevance search (section 9.6), and authority search (section 9.7). In those
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Fig. 17. TREC’09 Web Search Performance (a 1916-system network)

tasks, DEG and SimDeg searches achieved their best performances at α = 0 (with
no clustering in a random network) and their performances degraded with stronger
clustering. We reason that this was because queries in the earlier tasks were full web
documents from highly connected (popular) sites. Degree information was critical to
finding those relevant, well-connected sites and weak clustering creates opportunities
for sites of various degrees to interconnect, increasing the likelihood for searches to
“jump” to popular targets.

Results on SIM, SimDEG, and SimPGS methods show similar, strong performances.
There is a consistent inflecting pattern in web track searches, where best search per-
formance was achieved at around α = 3. SimPGS search, which combined similarity
and collection size information, appeared to perform competitively with optimal net-
work clustering (though not significantly better than SIM search). Figure 17 (a) also
shows that weak-clustering appeared to have a greater impact on search effectiveness
than over-clustering did. Over-clustering (e.g., increasing α from 3 to 5) did not signifi-
cantly degrade search performance. This was likely due to the relatively small size of
the network (1916 systems) in which clusters were not very far apart even with strong
segmentation/clustering.

Different optimal α values have been reported in our research. In Ke and Mostafa
[2010; Ke [2012], optimal α was found to be around 10 in a set of exact-match search
experiments, in which neighbors were selected from a much smaller pool (of 150 ran-
dom candidates). Among other factors, the pool size does have an important impact
on network clustering. Even with the same α value, a larger pool (1000 candidates
or more in this study) offers more choices and enables the alpha-based connectivity
function to be more selective, leading to stronger network clustering.

We reason that the larger pool size we used in this research makes the α parameter
a closer counterpart of the clustering exponent in Kleinberg [2000], which functions
at the global level (i.e., pool size = network size). If what we observe here about α
(roughly 2 to 3) is close to its true optimal value, then it suggests that the search space
in this investigation is a space of 2 to 3 dimensions according to Kleinberg [2000] and
Boguñá et al. [2009]. This is a very surprising finding because information retrieval
often involves high dimensionality (of a feature space) and it is not intuitive to under-
stand how two to three dimensions can be sufficient to represent various information
collections in the space. Finding a good explanation and understanding the implication
of this require closer scrutiny in future research.
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10. CONCLUSION

We conducted experiments on decentralized IR operations on various scales of informa-
tion networks and analyzed effectiveness, efficiency, and scalability of proposed search
methods. Experimental results discussed in the above sections well support all of the
four hypotheses on the Clustering Paradox, scalability of search, influence of degree
distribution, and efficient search methods. We summarize major findings.

10.1. Clustering Paradox

Results provided evidence about the Clustering Paradox in the IR context and
showed network structure was crucial to retrieval performance. In experiments on
the ClueWeb09B collection, we found SIM search, one of the proposed methods that
relied on similarity clues, achieved its best performance only at clustering exponent
α = 2 in larger-scale networks of 10, 000 and 100, 000 distributed systems. This level
of network clustering appears to have supported a balance between strong ties and
weak ties. While strong ties aid in creating local segments useful to guide searches,
weak ties provide opportunities for searches to jump from one segment to another. In-
creasing or decreasing the level of network clustering shifts the balance and degrades
search performance in effectiveness and efficiency.

This phenomenon of Clustering Paradox appeared in all of the experimented tasks,
namely, relevance search, authority search, exact match (rare known-item search), and
TREC’09 Web track tasks. It also appeared in networks of varied degree distributions.
Statistical analyses in this study, extending findings from our earlier research11 on
different retrieval scenarios, add to the confidence about the generalization of this
phenomenon in a broad range of retrieval contexts.

Our research has reported different optimal alpha values, which were in part due to
varied random pool sizes we employed for neighbor selection and other factors related
to differences in data and search tasks. The much larger pool size used in this study
emplified the network clustering effect and made the α parameter a closer counterpart
of the clustering exponent in Kleinberg [2000].

The discovery of optimal α at around 2 in major experiments of this study is a sur-
prising, important finding. According to Kleinberg [2000; Kleinberg [2006a; Boguñá
et al. [2009], decentralized searches in networks are optimal when clustering expo-
nent α is equal to the dimensionality of the search space. An optimal α of 2 suggests
low dimensionality of the search space in this study. However, IR systems have tra-
ditionally been associated with high dimensionality (e.g., of the feature space). The
implication of this low dimensionality in large-scale IR remains to be further studied
and understood.

10.2. Scalability of Findability

Examining the Clustering Paradox is crucial to understanding how search methods
can scale in large information networks. We have found that search time can be well
explained by a poly-logarithmic relation to network size at a specific level of network
clustering. This poly-log relationship suggests a high scalability potential for searching
in a continuously growing information space.

In our exact match (rare known-item search) experiments, search path length L (a
surrogate for search time) was found to be proportional to (logN)7, where N is the
number of systems in the network. The poly-logarithmic function was modeled on a
wide range of network size scales N ∈ [1, 102, 103, 104, 105] and showed a very large
goodness of fit R2 = 0.999. The exponent of the poly-log function was found to be 7,

11Our previous studies of different search tasks and on smaller scales can be found in Ke and Mostafa [2009;
Ke and Mostafa [2010]. Ke [2012] provides an overview of the earlier results.
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larger than 2 discovered in search experiments on non-IR tasks. We mainly focused
on network clustering for search performance in the experiments and believe that a
smaller exponent can be expected when other variables on decentralized searches are
taken into account.

10.3. Scalability of Network Clustering

In addition to the scalability of decentralized searches, the network clustering function
that supported very high effectiveness and efficiency of IR operations in large networks
was found to be scalable as well. Clustering only involved local self-organization and
required no global control – clustering time remained roughly constant, < 1 second,
across the various network sizes N ∈ [102, 103, 104, 105].

The clustering function required no “hard engineering” of the entire network but
provided an organic way for systems to participate and interconnect given their oppor-
tunities and preferences. This highly scalable, local clustering mechanism is a useful
feature to cope with dynamics in the distributed environment. When systems and con-
tents evolve, the clustering mechanism can respond to changes locally without global
propagation. That is, only neighbor systems directly connected to changed nodes will
need to receive updates, eliminating a huge amount of network traffic that is other-
wise needed. As shown by experimental results, this very local mechanism supports
effective and efficient discovery of relevant information in the global space.

11. IMPLICATION AND FUTURE WORK

The exponential growth of digital information in large, dynamic environments poses
great scalability challenges to today’s information retrieval systems. To be able to find
information effectively and efficiently in these environments such as the Web is a prob-
lem fundamental to numerous applications. The state-of-the-art Web search engines
are not scalable because the data centers they rely on do not match and cannot grow
proportionally to the growing world of information. This research presents an impor-
tant direction toward alternative information retrieval architectures that have the po-
tential to function better and scale more gracefully in the future. In the reported ex-
periments, we focused on the impact of network structure on search performance and
investigated a phenomenon we refer to as the Clustering Paradox, in which the topol-
ogy of interconnected systems imposes a scalability limit. The findings show promises
on decentralized search performance and offer insight into optimal network overlay
for large-scale distributed IR.

This research represents an important step toward the development of decentralized
retrieval systems in large, highly interconnected information spaces. Current experi-
ments, however, were conducted on relatively stable environments. Further research
on search in growing, dynamic (changing) settings is needed to show how such a search
architecture can adapt and scale in real-world environments. In addition, the decen-
tralized search architecture relies on individual distributed systems, which, in reality,
exercise autonomy and self-interests. An information network cannot be assumed to
be cooperative; besides the core challenge of search, issues such as incentive and trust
should be examined [Kleinberg 2006b]. Systems are diverse in their information collec-
tions and retrieval functionality. Variations in search effectiveness of individual nodes
will affect the overall utility of the decentralized retrieval architecture.

In the future, we plan to study system adaptation amid dynamic changes, retrieval
effectiveness from real user perspectives, and additional system variables such as
collection representation, ranking, and fusion functions in the context of large-scale
distributed systems for information retrieval. We believe further investigation of ad-
ditional structural factors as well as improved neighbor representation and search
methods will further improve search scalability. Experiments at a million-distributed-
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system level (and higher) remain to be conducted in order to understand and demon-
strate search efficiency on the web scale.
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Özgürand Simsek and David Jensen. 2008. Navigating networks by using homophily and
degree. Proceedings of the National Academy of Sciences 105, 35 (2008), 12758–12762.
DOI:http://dx.doi.org/10.1073/pnas.0800497105

Munindar P. Singh, Bin Yu, and Mahadevan Venkatraman. 2001. Community-based service location. Com-
mun. ACM 44, 4 (2001), 49–54. DOI:http://dx.doi.org/10.1145/367211.367255

Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, and Karl Aberer. 2007. Web text retrieval
with a P2P query-driven index. In SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, New York, NY, USA, 679–686.
DOI:http://dx.doi.org/10.1145/1277741.1277857

Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. 2003. Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In SIGCOMM ’03: Proceedings of the 2003 conference on Appli-
cations, technologies, architectures, and protocols for computer communications. ACM, New York, NY,
USA, 175–186. DOI:http://dx.doi.org/10.1145/863955.863976

Paul Thomas and David Hawking. 2009. Server selection methods in personal metasearch:
a comparative empirical study. Information Retrieval 12 (2009), 581–604. Issue 5.
DOI:http://dx.doi.org/10.1007/s10791-009-9094-z

C. J. van Rijsbergen and K. Sparck-Jones. 1973. A test for the separation of relevant and non-relevant
documents in experimental retrieval collections. Journal of Documentation 29, 3 (1973), 251–257.

Duncan Watts. 2003. Six Degrees: The Science of a Connected Age. W.W. Norton, New York.

Duncan J. Watts, Peter Sheridan Dodds, and M. E. J. Newman. 2002. Identity and Search in Social Net-
works. Science 296, 5571 (2002), 1302–1305. DOI:http://dx.doi.org/10.1126/science.1070120

Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393,
6684 (June 1998). http://dx.doi.org/10.1038/30918

Jinxi Xu and W. Bruce Croft. 1999. Cluster-based language models for distributed retrieval. In SIGIR ’99:
Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, New York, NY, USA, 254–261. DOI:http://dx.doi.org/10.1145/312624.312687

Bin Yu and Munindar P. Singh. 2003. Searching social networks. In AAMAS ’03: Proceedings of the second
international joint conference on Autonomous agents and multiagent systems. ACM, New York, NY, USA,
65–72. DOI:http://dx.doi.org/10.1145/860575.860587

Received November 2011; revised August, December 2012; accepted January 2013

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 3, Publication date: April 2013.

View publication stats

https://www.researchgate.net/publication/233289119

